
The Traveling Visitor Problem and the Koper
Algorithm for Solving It

Milan Djordjevic, Andrej Brodnik and Marko Grgurovič

Abstract We consider the problem when visitor wants to visit all interesting sites
in a city exactly once and to come back to the hotel. Since, thevisitors use streets,
walking trails and pedestrian zones, the goal is to minimizethe visitor’s traveling.
A new problem the Traveling Visitor Problem (TVP) is then similar to the Traveling
Salesman Problem (TSP) with a difference that the travelingvisitors, during its visit
of sites, can not fly over buildings in the city, instead visitors have to go around these
obstacles. That means that all ”air” distances, like those in a TSP, are impossible
in this case. The tested benchmarks are combined from three real instances made
using tourist maps of cities of Koper, Belgrade and Venice and two instances of
modified cases from TSPLIB. We compared two methods for solving the Traveling
Visitor Problem. In all tested cases the Koper Algorithm significantly outperforms
the Naı̈ve Algorithm for solving the TVP.

1 Introduction

In the Traveling Salesman Problem (TSP) a set{C1,C2, ...CN} of cities is considered
and for each pair(Ci,C j) wherei 6= j, a distanced(Ci,C j) is given. The goal is to
find a permutationπ of the cities that minimizes the quantity

N−1

∑
i=1

d(Cπ(i),Cπ(i+1))+ d(Cπ(N),Cπ(1)). (1)

This quantity is referred to as the tour length since it is thelength of the tour a
salesman would make when visiting the cities in the order specified by the permu-

Milan Djordjevic
UP DIST, Koper, Slovenia e-mail: milan.djordjevic@student.upr.si

Andrej Brodnik
UP DIST, Koper, Slovenia e-mail: andrej.brodnik@upr.si

Marko Grgurovič
UP DIST, Koper, Slovenia e-mail: marko.grgurovic@student.upr.si

1

2 Milan Djordjevic, Andrej Brodnik and Marko Grgurovič

tationπ , returning at the end to the initial city. We will concentrate in this paper on
the symmetric TSP (STSP) in which the distances satisfyd(Ci,C j) = d(C j,Ci) for
1≤ i, j ≤ N. While the TSP is known to beNP-hard [12] even under substantial re-
strictions. The case with symmetric distances is well researched and there are many
algorithms which perform well even on large cases [1, 3]. In the literature [10, 11]
the Traveling Salesman Problem is usually represented and considered as a graph
theoretical problem.

An instance of the STSP can be seen as a complete graphG = (V,E) where the
set of verticesV is given by the cities and edges between each city in the graphwith
corresponding edge weightsd(Ci,C j). The STSP then translates to the problem of
finding a Hamiltonian Tour of minimal length in the graphG.

Applications of the TSP and its variations go way beyond the route planning
problem of a traveling salesman and span over several areas of knowledge includ-
ing mathematics, computer science, operations research, genetics, engineering, and
electronics. In addition, there are many different variations of TSP which are de-
scribed and explored in the literature and also variations derived from everyday
life. Some of them are: Machine Scheduling Problems [4, 10],The time dependent
TSP [9], The delivery man problem which is also known as theminimum latency
problem and thetraveling repairman problem, for details on this problems, we refer
to [5,8] respectively.

Traveling Tourist Problem [13] is a problem in which a tourist wishes to see
all monuments (nodes) in a city, and so must visit each monument or a neighbour
thereof (it is assumed that a monument is visible from any of its neighbours the
edges therefore represent lines of sight). The resulting walk will therefore visit a
subset of all nodes in the graph. The Traveling Tourist Problem shares a similar
name with our problem but is otherwise a very different problem.

The STSP can be solved using the Grafted Genetic Algorithms (GGA) as was
shown in [7]. The currently most efficient implementation ofthe branch-and-cut
method which was introduced by Padberg and Rinaldi [14] for solving the symmet-
ric case of Traveling Salesman Problem isConcorde [2]. Concorde’s TSP solver has
been used to obtain the optimal solutions to the full set of 110 TSPLIB instances,
the largest having 85,900 cities. Finally, in a graphG we can find besides short-
est closed walk also the shortest path between any pair of vertices. This problem
is in the literature known as all-pairs shortest path problem [6]. It aims to compute
the shortest path from each vertexu to every other vertexv. The Floyd-Warshall
algorithm [6] is an efficient algorithm to find all-pairs shortest paths on a graphG.

2 Traveling Visitor Problem

Visitors have arrived in a hotel in some new town, with a desire to visit all interesting
sites in a city exactly once and to come back to the hotel. Visitors in generally use
their feet for traveling through the city, for which they usestreets, walking trails and
pedestrian zones. The goal is to minimize the visitors traveling.

The Traveling Visitor Problem and the Koper Algorithm for Solving It 3

The Traveling Visitor Problem is a version of the Traveling Salesman Problem
with a difference that the traveling visitor, during its visit of sites, can not fly over the
buildings in the city, instead visitors must go around theseobstacles. This difference
is demonstrate in the Figure 1. This means that the ”air” distances, as we know
them in the TSP, are in this case impossible (direct edge fromi to j in Figure 1).
Visitors use the walking paths and pedestrian zones of variable length. These limits
determine the weight of edges connecting the vertices in thegraph.

The Traveling Visitor Problem is stated as: given a sparse, connected, weighted
graphG = (V,E,c), with a set of verticesV = S∪X andS∩X = /0, S belongs to
interesting sites in the city (verticesi and j in Figure 1),X belongs to crossroads in
the city (verticesk andm in Figure 1), a set of edgesE, and a cost of travelingc.
The goal is to find the shortest closed walk through all vertices fromS, according to
c in graphG, although we may travel through vertices fromX .

The concepts we summarised above can be modified easily to take the directions
of the edges into account. The asymmetric traveling visitorproblem (ATVP) is then
similar to the symmetric TVP above, i. e. it is the problem of finding a closed walk
of minimal length in a sparse weighted graph. TheEuclidean TVP, or planar TVP,
is the TVP with the distance being the ordinaryEuclidean distance. The Euclidean
TVP is then a particular case of the metric TVP, since distances in a plane obey the
Euclidian triangle inequality.

This problem, by the knowledge of the authors, has no references in publications
due date of writing it.

3 Algorithms for solving TVP

First thinking about possible solution for Traveling Visitor problem is motivated by
the intuitive thinking of a tourist when the concerned get inpossession of a tourist
map. That is: visit the first place from the map, then second one, thennth, until all

k

ij

m

Fig. 1 TSP and TVP, Two rectangles represent buildings (obstacles) in the city. Red nodes repre-
sent interesting sites in the city (vertices from setS), black nodes represent crossroads in the city
(vertices from setX), the red line represent the euclidean shortest connectionbetween two inter-
esting sites (this is the case in TSP), black lines representthe connection between two interesting
sites, going through two crossroads (this is the case in TVP)

4 Milan Djordjevic, Andrej Brodnik and Marko Grgurovič

sites from the map are visited and then come back to the starting site. The results of
this method depend directly on the order in which the interesting sites are listed on
the map. Furthermore, this intuitive method does not contain any science value.

First proposed method for solving the Traveling Visitor Problem is the Naı̈ve
based algorithm, shown in Algorithm 1. In the first line of pseudocode we can dis-
tinguish next parameters:S belongs to interesting sites in the city,X belongs to
crossroads in the city, a set of edgesE, andW represents the distance matrix of
the graphG, (S∪X × S∪X). In the first step of an algorithm the Traveling Visitor
Problem is solved as an instance of Traveling Salesman Problem. In next, from the
distance matrixW we produce a distance matrixZ (S× S), which is the solution of
all-pairs shortest path problem (APSP). Finally, in the loop block (lines 6 through
8) the solution for TVP is given by applaying the shortest paths fromZ into T .

Algorithm 1 Naı̈ve Algorithm
1: procedure NA ÏVE(S,X,E,W)
2: T ← TSP(W)
3: Z← S×S
4: Z← APSP(S∪X ,E,W)
5: cost← 0
6: for all (i, j)∈ T : do
7: cost←cost+Zi j

8: end for
9: end procedure

The second proposed method for solving the Traveling Visitor Problem is the
Koper Algorithm, shown in Algorithm 2. The first line of pseudocode contains the
same parameters as naı̈ve algorithm. In the first step we find the all pairs shortest
paths in our graphG. As an input a distance matrixW is used and as the output
a distance matrixZ is obtained. In the next step we solve the Traveling Salesman
Problem on the distance matrixZ. Furthermore, we get the solutionT , which is a
solution for Traveling Visitor Problem.

The difference in this two proposed methods is whether we first solve the TSP
then APSP, it is the case in naı̈ve algorithm, or we first solveAPSP and then TSP
which is the case in koper algorithm.

Algorithm 2 Koper Algorithm
1: procedure KOPER(S,X,E,W)
2: Z← S×S
3: Z← APSP(S∪X ,E,W)
4: T ← TSP(Z)
5: end procedure

The Traveling Visitor Problem and the Koper Algorithm for Solving It 5

3.1 Adapted Floyd−Warshall algorithm

The problem stated in the previous section is of finding the shortest paths between
each pair of verticesu andv, whereu,v ∈ S, in the graphG. This can be cast as
a run-of-the-mill all-pairs shortest path problem. Indeed, using the Floyd-Warshall
algorithm, we can obtain a solution in timeΘ(|V |3). However, the nature of our
problem is somewhat more restrictive: we are only interested in the shortest paths
betweenS× S, yet we would still like the paths to go through vertices fromthe
setX if they reduce the overall path length. In contrast, the Floyd-Warshall algo-
rithm computes a shortest paths betweenV ×V . To this end, we propose a simple
modification which reduces the running time, albeit not asymptotically. The Floyd-
Warshall algorithm is shown in Algorithm 3, whereW is the distance matrix of the
graphG.

Algorithm 3 Floyd-Warshall
1: procedure FLOYD -WARSHALL(V,W)
2: for all k ∈V do
3: for all i ∈V do
4: for all j ∈V do
5: Wi j := min(Wi j ,Wik +Wk j)
6: end for
7: end for
8: end for
9: end procedure

Let x = |X | ands = |S|. Using these quantities, the number of iterations of the
Floyd-Warshall algorithm can be written as(s + x)3 = s3 + x3 + 3s2x+ 3x2s. We
offer a different approach, shown in Algorithm 4.

The number of iterations of algorithm 4 can be plainly seen toequal:s3+ x3+
s2x+ x2s. The best gain, when compared to Floyd-Warshall, is whens = x which
amounts to exactly one half of all iterations of the Floyd-Warshall algorithm. Al-
though it takes fewer iterations, it also computes fewer shortest paths, since we are
only interested inS× S. We will prove the correctness of algorithm 4 by appealing
to the graph shown in Fig. 3.1.

In order to examine how algorithm 4 works, it is helpful to visualize sets of ver-
tices, as shown in Fig. 3.1. It should be noted that we will make use of a sparsely
connected graph, which simplifies the analysis. The result does not change for com-
plete graphs, since the algorithm itself makes no such assumptions.

The first call to Floyd-Warshall (line 2) in algorithm 4 finds the all-pairs short-
est paths between the vertices inX , but using only vertices fromX on the paths
themselves. Note that there are two such sets shown in Fig. 3.1, i.e.X ′ andX ′′, with
no direct edges between them. Thus, we can only find the shortest paths inside the
individual sets. Once the paths are found, we can find our way from any vertex inX
to any vertex inX if a path that does not take us through vertices inS exists.

6 Milan Djordjevic, Andrej Brodnik and Marko Grgurovič

Algorithm 4 Adapted Floyd-Warshall Algorithm
1: procedure ADAPTED(S,X,W)
2: FLOYD -WARSHALL(X ,W)
3: for all k ∈ X do
4: for all i ∈ X do
5: for all j ∈ S do
6: Wi j := min(Wi j ,Wik +Wk j)
7: end for
8: end for
9: end for

10: for all k ∈ X do
11: for all i ∈ S do
12: for all j ∈ S do
13: Wi j := min(Wi j,Wik +Wk j)
14: end for
15: end for
16: end for
17: FLOYD -WARSHALL(S,W)
18: end procedure

S′ X ′

S′′X ′′

Fig. 2 Each node in the graph represents an arbitrary amount of vertices from a single set that are
arbitrarily interconnected. The edges represent (arbitrarily many) connections to other such sets.
Note, thatS′,S′′ ⊂ S andX ′,X ′′ ⊂ X .

The first loop block (lines 3 through 9) of Algorithm 4 finds every shortest path
starting inX and ending inS, by going through vertices inX only. Every vertex in
X knows the path to every other vertex inX , as long as the path does not go through
vertices inS. At this point there must exist a pair of verticesu ∈ X , v ∈ S where
Wu,v < ∞ 1. Thus, when the first loop block finishes, every vertex inX knows the
shortest paths throughX to some vertices inS. In Fig. 3.1 this means that the vertices
in X ′ know the shortest paths throughX ′ that end inS′ or S′′. The same is true for
vertices inX ′′.

Finally, the second loop block (lines 10 through 16) of the algorithm finds every
shortest path starting in some vertex inS, going through some vertex inX and ending
in some vertex inS. The only vertices inS that have paths to vertices inX are
those that have edges that connect them. However, the vertices inX that they are
connected to, know the shortest paths throughX ending in some vertices inS. Thus,
the algorithm connects the setsS′ andS′′ via the shortest paths throughX ′ andX ′′.

1 If there were no such pair, a path fromS to S going throughX would not exist.

The Traveling Visitor Problem and the Koper Algorithm for Solving It 7

At the end (line 17), we run the Floyd-Warshall algorithm onS. Since the sets
S′ andS′′ have been connected via shortest paths throughX , we obtain the APSP
solution forS× S whereby the paths can go throughX .

4 Experiment

For testing our strategy and comparing it to other methods weused the real instances
of the Traveling Visitor Problem, which were made from official tourist maps of
cities of Koper, Belgrade and Venice. In the instance of Belgrade two different cases
were made and they differed in the size of the problem, i.e. the number of vertices in
the graph. From the publicly available library, TSPLIB, of sample benchmarks for
the TSP and related problems, two instances of the symmetrictraveling salesman
problem were taken, modified and tested.

These two instances were modified in such a way that a new graphG′ was made
satisfying the conditions of a sparse, connected, weightedgraph. Furthermore we
split V into a set of verticesS and set of verticesX , such that|S| = |X | = |V |/2.
A vertex degree 5 is arbitrarily assigned, inspired by the case of real instances,
and means that from every vertex fromV there is exactly 5 edges going to the other
vertex fromV . The 5 edges per vertex were chosen randomly, according to a uniform
probability distribution.

Altogether 5 instances were tried out, with different sizeswhich range from 120
to 1002 vertices per instance. We compared two methods for solving the traveling
visitor problem. The first method is the naı̈ve algorithm, shown in Algorithm 1. The
second tested method is the koper algorithm, shown in Algorithm 2. For solving the
TSP, as one step in both algorithms, we used the Concorde Algorithm, presented in
Section 1. Furthermore, for solving the APSP, as a part of both algorithms, we used
the Adapted Floyd−Warshall algorithm, which was presented in Section 3.1.

5 Results

The results of the experiment are summarized in Table 1. Fiveinstances were tried
out, with different sizes, ranging from 120 to 1002 verticesper instance. The names
of these cases are in the first column. The second column contains the size of the
problem, i.e. the number of vertices. The third column in Table 1 corresponds to the
number of vertices in setS and in the top three instances the number of interesting
sites from tourist maps. The fourth column contains names ofthe two tested meth-
ods. The fifth column corresponds to the length of the tour i.e. the cost of a solution
which was obtained in the experiment. The column is titled Tour Cost and in all six
cases the shortest tours are obtained by Koper Algorithm. The results for Koper Al-
gorithm are coloured in red. The last column corresponds to the difference in tested
methods displayed in percentages. The first tested method, the naı̈ve algorithm, per-

8 Milan Djordjevic, Andrej Brodnik and Marko Grgurovič

formed poorly in comparison to the koper algorithm. The quality differs from 6.52%
in the case of Belgrade163 to 354.46% in the case of pr1002 instance. Although the
algorithms are similar, (the difference is whether we first solve the TSP then APSP,
it is the case in naı̈ve algorithm, or we first solve APSP and then TSP which is the
case in koper algorithm) the difference in provided solutions between two tested
methods is significant.

Name (V) (S) Methods Tour Cost Difference

Naïve 4738 17.22%

Koper 4042 0.00%

Naïve 100389 6.52%

Koper 94246 0.00%

Naïve 122119 8.77%

Koper 112275 0.00%

Venice 210 72 Naïve 26648 24.24%

Koper 21448 0.00%

Naïve 11818732 354.46%

Koper 2600585 0.00%

Naïve 921499 249.08%

Koper 263983 0.00%

Koper 120 55

Belgrade

250 90

53163

lin318 318 159

pr1002 1002 501

Table 1 Two techniques for solving the Traveling Visitor Problem

6 Conclusions

The goal of this paper was to describe a new problem from graphtheory, named
the Traveling Visitor Problem (TVP). Although the new problem is similar to the
well known Traveling Salesman Problem, when we try to solve it with the Naı̈ve
Algorithm we get solutions far from optimal. The minimum cost solutions for the
Traveling Visitor Problem instances tested in the paper areprovided by Koper Al-
gorithm. The tested benchmarks are combined from three realinstances made using
tourist maps of cities of Koper, Belgrade and Venice and two instances of modified
cases from TSPLIB. In all tested cases the Koper Algorithm significantly outper-
forms the Naı̈ve Algorithm for solving the Traveling Visitor Problem.

The Traveling Visitor Problem and the Koper Algorithm for Solving It 9

References

1. D. Applegate, R. Bixby, V. Chvatal, and B. Cook. Finding cuts in the TSP. Technical report,
Center for Discrete Mathematics and Theoretical Computer Science, 1995.

2. D. Applegate, R. Bixby, V. Chvátal, and W. Cook. TSP cuts which do not conform to the
template paradigm. InComputational Combinatorial Optimization, pages 261–304, 2001.

3. D. Applegate, R. Bixby, W. Cook, and V. Chvátal.On the solution of traveling salesman
problems. Rheinische Friedrich-Wilhelms-Universitat Bonn, 1998.

4. M.O. Ball and M.J. Magazine. Sequencing of insertions in printed circuit board assembly.
Operations Research, pages 192–201, 1988.

5. A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P.Raghavan, and M. Sudan. The
minimum latency problem. InProceedings of the twenty-sixth annual ACM symposium on
Theory of computing, pages 163–171. ACM, 1994.

6. T. Cormen, C. Leiserson, R. Rivest, and C. Stein.Introduction to Algorithms, Third Edition.
The MIT Press, 3rd edition, 2009.

7. M. Djordjevic and A. Brodnik. Quantitative Analysis of Separate and Combined Performance
of Local Searcher and Genetic Algorithm. InProceedings of the International Conference on
Operation Research-OR2011, pages 130–132. IFOR, ETH Zurich, 2011.

8. A. Garcia, P. Jodrá, and J. Tejel. A note on the traveling repairman problem.Networks,
40(1):27–31, 2002.

9. L. Gouveia et al. A classification of formulations for the (time-dependent) traveling salesman
problem.European Journal of Operational Research, 83(1):69–82, 1995.

10. G. Gutin and A.P. Punnen.The traveling salesman problem and its variations. Kluwer Aca-
demic Pub, 2002.

11. D.S. Johnson and L.A. McGeoch. The traveling salesman problem: A case study in local
optimization. InLocal search in combinatorial optimization, pages 215–310. 1997.

12. D.S. Johnson and C.H. Papadimitriou.Computational complexity and the traveling salesman
problem. Massachusetts Institute of Technology, 1981.

13. G.F. Lima, A.S. Martinez, and O. Kinouchi. Deterministic walks in random media.Physical
Review Letters, 87(1):10603, 2001.

14. M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-scale
symmetric traveling salesman problems.SIAM review, 33(1):60–100, 1991.

