
UNIVERSITY OF PRIMORSKA
FACULTY OF MATHEMATICS, NATURAL SCIENCES AND

INFORMATION TECHNOLOGIES KOPER

Milan Djordjevic

GRAFTED GENETIC ALGORITHM AND THE TRAVELING VISITOR
PROBLEM

PhD Thesis

March 2012 Supervisor: Prof. Andrej Brodnik, PhD

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my Director of Studies, Prof. Andrej
Brodnik. He has helped, guided and supported me throughout this work. I am
deeply indebted to Andrej for his generous and invaluable advice on various matters,
be it writing papers, giving talks, preparing slides, or other non-research matters. I
am particularly thankful for his patience and encouragement, which has allowed me
to pursue what has interested me.

I am also very grateful and extend my sincere thanks to Dr. Dragan Marušič,
Dr. Branko Kavšek, Dr. Janez Žibert, Dr. Iztok Savnik, and Dr. Bojan Kuzma for
their rewarding discussion and unselfish support.

My gratitude is also deserved by the members of the DIST research group from
UP FAMNIT, who have provided help and friendship during my time in the group.
My particular thanks go to Jernej, Tine, Andrej, Damjan, David, Pavel, Matjaž
and Marko. My thanks go to the helpful and friendly members of department of
mathmatics from UP FAMNIT and in particular to Klavdija, Cui, Martin, Boštjan,
Ademir and Štefko.

A special thanks goes to the other colleagues and scientist in OR, EC, Economics,
Organizations, Maths and Psychology for sharing with me their ideas, insights, views,
projects, etc. during PhD studies. I would like to give thanks to Dr. William Cook,
Dr. Peter Bosman, Dr. Marko Urh, Mr. Rado Pezdir and Dr. Milan Tuba.

I would also like to thank all my best friends, particuarly Tadija, Pop, Neša,
Crni, Irena, Tomaž, Peđa, Boštjan and Mlađa. You helped make my university life
most enjoyable.

Thanks to my family in Belgrade: Dada, Daja, Olja, Dace, Peđa, Goran, Kaća,
Jeca, Gaga, Boki, Sneža, Goga, Tića, Saška, and their families. I am very grateful
for your support.

To the woman that is my life companion, my girlfriend Jasmina Simović. You
bring laughter, tenderness and, above all, love to my life. Therefore, "thank you"
are too small words to express gratitude.

Finally and most importantly, I thank my family for their love, and constant
support and encouragement. I want to thank my father Gmitar Ðorđević, my mother
Slavica Ðorđević and my brother Bojan Ðorđević for the moral and spiritual harmony
they represent for me.

Dedicated to my family!

Abstract
Grafted Genetic Algorithm and the Traveling Visitor Problem

In this PhD Thesis two related topics from theoretical computer science are con-
sidered. The first one considers Grafted Genetic Algorithms. The thesis analyzes
separate, combined and partial performance of local searcher and genetic algorithm.
On the Traveling Salesman Problem we examine the impact of hybridization a 2-opt
heuristic based local searcher into the genetic algorithm. Genetic algorithm provides
a diversification, while 2-opt improves intensification. Results on examples from
TSPLIB show that this method combines good qualities from both methods applied
and significantly outperforms each individual method. In tests we applied hybridiza-
tion at various percentages of genetic algorithm iterations. We also studied at which
iterations of the genetic algorithm to apply the hybridization. We applied it at ran-
dom iterations, at the initial iterations, and the ending ones where the later proved
to be the best.

The second topic considers the Traveling Visitor Problem. We consider the prob-
lem when a visitor wants to visit all interesting sites in a city exactly once and to come
back to the hotel. Since, the visitors use only walking trails and pedestrian zones, the
goal is to minimize the traveling visitor’s walk. A new problem the Traveling Visitor
Problem is then similar to the Traveling Salesman Problem with a difference that
the traveling visitors, during its visit of sites, can not fly over buildings in the city,
instead visitors have to go around these obstacles. That means that all Euclidean
distances, like those in Euclidean TSP, are impossible in this case. The tested bench-
marks are combined from three real instances made using tourist maps of cities of
Koper, Belgrade and Venice and two instances of modified cases from TSPLIB. We
compared two methods for solving the Traveling Visitor Problem. In all tested cases
the Koper Algorithm significantly outperforms the Naïve Algorithm for solving the
TVP.

ACM Computing Classification System: F.2.1, G.1.2, G.1.6, G.2.2, G.2.3.

Key words: Traveling Salesman Problem, Genetic Algorithms, Memetic Algo-
rithms, Grafted Genetic Algorithms, Traveling Visitor Problem, Koper Algorithm,
Naïve Algorithm.

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 ii

Izvleček
Cepljeni genetski algoritmi in problem potujočega obiskovalca

V doktorski disertaciji sta obravnavani dve povezani temi s področja teoretičnega
računalništva.

Tretje poglavje obravnava cepljene genetske algoritme. Disertacija analizira sku-
pno in delno izvedbo lokalnega iskalca in genetskega algoritma. Na problemu tr-
govskega potnika (angl. Traveling Salesman Problem), smo preučevali vpliv hib-
ridizacije 2-opt hevrističnega lokalnega iskalca v genetski algoritem. Genetski algo-
ritem zagotavlja raznolikost (angl. diversification) , medtem ko 2-opt izboljša krepitev
(angl. intensification). Rezultati primerov iz TSPLIB kažejo na to, da metoda
združuje dobre lastnosti obeh metod in znatno prekaša vsako posamezno metodo. V
testih smo uporabili hibridizacijo pri različnih odstotkih genetskih iteracij algoritma.
Prav tako smo preizkušali, katere iteracije genetskega algoritma je potrebno hibridi-
zirati. Hibridizacijo smo izvedli pri naključnih, začetnih in končnih iteracijah, za
katere se je kasneje izkazalo, da so najboljše.

Četrto poglavje obravnava problem potujočega obiskovalca (angl. Traveling Visi-
tor Problem). Problem nastane, ko si obiskovalec želi ogledati vse zanimive lokacije
v mestu natanko enkrat in se po ogledu vrniti v hotel. Cilj je zmanjšati sprehod
potujočega obiskovalca.

Problem potujočega obiskovalca je izpeljan iz problema trgovskega potnika , pri
čemer velja pravilo, da obiskovalec izbira samo med potmi, ki jih je možno prehoditi.
To pomeni, da so Evklidske razdalje (angl. Euclidean distance), kot jih poznamo
v Evklidskem TSP, v našem primeru napačne. Obiskovalci uporabljajo sprehajalne
poti in območja za pešce, ki so različno dolge. Te omejitve določajo težo povezav, ki
povezujejo vozlišča v grafu. Za testiranje smo uporabili primere problema potujočega
obiskovalca, ki smo jih izdelali iz uradnih turističnih zemljevidov za mesta Koper,
Beograd in Benetke ter dveh spremenjenih primerov iz TSPLIB. Za reševanje prob-
lema potujočega obiskovalca smo primerjali dve metodi. V vseh testiranih primerih
problema potujočega obiskovalca, algoritem koper občutno prekaša naivni algoritem.

ACM Computing Classification System: F.2.1, G.1.2, G.1.6, G.2.2, G.2.3.

Ključne besede: problem trgovskega obiskovalca, genetski algoritmi, memetični
algoritmi, cepljeni genetski algoritmi, problem potujočega obiskovalca, algoritem
koper, naivni algoritem.

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 iv

Contents

List of Figures vii

List of Algorithms ix

List of Tables xi

1 Introduction 1

1.1 Traveling Visitor Problem . 1
1.2 Traveling Salesman Problem . 2
1.3 Research Objectives . 3

2 Background 5

2.1 Traveling Salesman Problem . 5
2.1.1 Graph representation . 6
2.1.2 Computational complexity . 7
2.1.3 TSP Applications . 10
2.1.4 More Variations of the TSP 12
2.1.5 All-Pairs Shortest Paths . 14

2.2 TSP Heuristics . 15
2.2.1 Tour Quality . 15
2.2.2 Tour Construction Algorithms 16
2.2.3 Local Search Algorithms . 18
2.2.4 Nature Inspired Algorithms 21
2.2.5 Finding exact solutions for the TSP 28

3 Grafted Genetic Algorithm for Traveling Salesman Problem 31

3.1 Introduction . 31
3.2 Grafted GA for the TSP . 33
3.3 Experiment . 35
3.4 Results . 35
3.5 Conclusions . 38

4 Traveling Visitor Problem 41

4.1 Introduction . 41
4.2 Traveling Visitor Problem . 42

4.2.1 Algorithms for solving TVP 43

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 vi

4.2.2 Adapted Floyd-Warshall algorithm 44
4.3 Experiment . 46
4.4 Results . 46
4.5 Conclusions . 47

5 Conclusion 49

Povzetek v slovenskem jeziku 51
5.1 Uvod . 51
5.2 Vsebina disertacije . 53
5.3 Raziskava . 54

5.3.1 Cepljeni Genetski Algoritmi 54
5.3.2 Problem Potujocega Obiskovalca 55

5.4 Metodologija . 56
5.5 Doprinos k znanosti . 57

Bibliography 59

Index 70

List of Figures

1.1 TSP and TVP . 1

2.1 Edge removal and reconnection of 2-opt algorithm 19

3.1 Exchange step of 2-opt algorithm . 34
3.2 Results for pr439 . 38
3.3 Running times . 38
3.4 Results for end sequence . 40

4.1 TSP and TVP, Two rectangles represent buildings (obstacles) in the
city. Red nodes represent interesting sites in the city (vertices from
set S), black nodes represent crossroads in the city (vertices from set
X), the red line represent the euclidean shortest connection between
two interesting sites (this is the case in TSP), black lines represent the
connection between two interesting sites, going through two crossroads
(this is the case in TVP) . 48

4.2 Each node in the graph represents an arbitrary amount of vertices from
a single set that are arbitrarily interconnected. The edges represent
(arbitrarily many) connections to other such sets. Note, that S′, S′′ ⊂
S and X ′,X ′′ ⊂ X. 48

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012viii

List of Algorithms

1 Floyd-Warshall . 15
2 Nearest Neighbour . 17
3 Insertion . 17
4 Local Search . 18
5 Simulated Annealing . 22
6 Evolutionary Algorithms . 24
7 Genetic Algorithm . 24
8 Hybrid Genetic Algorithm . 27
9 Grafted Genetic Algorithm . 34
10 Naïve Algorithm . 43
11 Koper Algorithm . 44
12 Floyd-Warshall . 44
13 Adapted Floyd-Warshall Algorithm 45

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 x

List of Tables

3.1 Five techniques for solving Euclidean TSP 36
3.2 Partial Grafting of a Genetic Algorithm 39

4.1 Two techniques for solving the Traveling Visitor Problem 47

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 xii

Chapter 1

Introduction

I arrived to Koper, from Belgrade, on postgraduate studies of computer science,
in 2007. Immediately, I had an urge to acquaint myself with the city in which I was
to live for the next four years. I was drawn by the city center with its numerous sites
- exactly 55 of them were listed in the official tourist map of Koper. Since doctoral
studies were exhausting, I did not have much spare time to roam the streets of Koper.
So I began to wonder whether I could devise a way of optimizing the tour through
the city, by visiting all sites in as few steps as possible. We named the problem the
Traveling Visitor Problem (TVP).

1.1 Traveling Visitor Problem

The Traveling Visitor Problem is a version of the Traveling Salesman Problem,
(TSP) [5, 53, 58, 61, 64, 67, 73, 90, 97], with a difference that the traveling visitors,
during their visit of sites, can not fly over the buildings in the city, instead visitors
must go around these obstacles. This difference is demonstrated in Figure 1.1. This
means that the Euclidean distances [55, 110], as we know them in the Euclidean
TSP, are in this case impossible (direct edge from i to j in Figure 1.1). Visitors use
the walking paths and pedestrian zones of variable length. These limits determine
the weight of edges connecting the vertices in the graph.

Formally, the Traveling Visitor Problem is stated as: given a connected, weighted

k

ij

m

Figure 1.1: TSP and TVP

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 2

graph G = (V,E, c), with a set of vertices V = S ∪X and S ∩X = ∅, S belongs to
interesting sites in a city, X belongs to crossroads in a city , a set of edges E, and a
cost of traveling c. The goal is to find the shortest closed walk through all vertices
of S, according to c in graph G, although we may walk through vertices from X.

Chapter 2 introduces the basic concepts of the Traveling Salesman Problem and
related problems. Furthermore the algorithms for solving it, are described. This
chapter, provides the knowledge necessary for further chapters of the dissertation to
become understandable to the broad range of readers.

1.2 Traveling Salesman Problem

In the early 30’s of the 20th century, the Austrian mathematician Karl Menger
challenged the research community of that time to consider, from the mathematical
point of view, the following problem: A traveling salesman has to visit exactly once
each one of a list of n cities and then return to the home city. He knows the cost of
traveling from any city i to any other city j. Thus, the question is which is the tour
of least possible cost the salesman can take [98].

The instance of the TSP is formally defined on the complete graph G, with the
set of vertices V = {v1, v2, ..., vn}, for some integer n and by a cost function assigning
a cost ci,j to the edge (vi, vj) for any i and j in G.

TSP can be viewed also as a permutation problem. Let Pn be a set of all permuta-
tions of the set {1, 2, ..., n}. Then the traveling salesman goal is to find a permutation
π = (π(1), π(2), ..., π(n)) in Pn, that minimizes the quantity

n−1
∑

i=1

d(cπ(i), cπ(i+1)) + d(cπ(n), cπ(1)). (1.1)

This quantity is referred to as the tour length since it is the length of the tour a sales-
man would make when visiting the cities in the order specified by the permutation
π, returning at the end to the initial city.

TSP is one of the most important representatives of a large class of problems
known as combinatorial optimization problems [65]. Since the TSP belongs to a
class of NP-hard problems [74], an efficient algorithm for TSP probably does not
exist. More accurately, such an algorithm exists if and only if the two computational
classes P and NP coincide. From a practical point of view, it means that in general
it is quite impossible to find an exact solution for any TSP instance with n nodes,
that has a behaviour considerably better than the algorithm which computes all of
the (n− 1)! possible distinct tours, and then returns the least costly one.

If we are looking for applications, a different approach can be used. Given a TSP
instance with n nodes, any tour passing once through all cities is a feasible solution
Algorithms that construct in polynomial time with respect to n feasible solutions are
called heuristics [12,118]. In general, these algorithms produce solutions but without
any quality guarantee as to how far is their cost from the optimal.

There exist two versions of TSP: the Symmetric TSP and the Asymmetric TSP.
In the symmetric form, known as the STSP [71,72,91,95], the cost distance between

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 3

nodes i and j is equal to the cost distance between nodes j and i (cij = cji). In
the case of asymmetric TSP (ATSP) [14, 16, 18, 24], there is no such symmetry.
In addition, there are many different variations of TSP which are described and
explored in the literature and also a variations derived from everyday life. From the
dissertation point of view, the most important applications of the TSP studied in
the literature, are in more details presented in Chapter 2.

First steps in solving the TSP were consist of exact methods and heuristics. Ex-
act methods like cutting planes [112] and branch and bound [27,112], can optimally
solve relatively small problems (depending on the size of n), while methods such
as different variants of Lin-Kernighan algorithm [6, 45, 68, 77], and Concorde algo-
rithm [3–5] are good for larger problems. Furthermore, some algorithms based on
greedy principles such as nearest neighbour [61], and spanning tree [67] can be also
used for solving a TSP. The above-mentioned methods for solving TSP result in ex-
ponential computational complexities. For that reason a new methods are required
to overcome this shortcoming. These new methods include different kinds of heuristic
techniques, nature based optimization algorithms, etc. Various creatures and natural
systems, developed in nature, are interesting and valuable sources of inspiration for
exploring and creating new methods for solving a TSP and variations of TSP. Let
us count the most important of them. Evolutionary Algorithms [99, 104, 123, 132],
Genetic Algorithms [42,49, 50, 101,107,114,122,126,130, 131,135,136], Memetic Al-
gorithms [60,85–87,102,110], Simulated Annealing [82], Ant Systems [38] and finally
Grafted Genetic Algorithms [34], [37], [35], [36]. The latter is a type of hybrid genetic
algorithms [42,66,92,135] and they will be described and demonstrated in the thesis.

The first topic of the thesis, presented in Chapter 3, deals with the heuristic
method called the Grafted Genetic Algorithm, through which we solve the Traveling
Salesman Problem. In this chapter the aim is to show the quality of the solution and
the running time of the grafted genetic algorithm when it is applied to the instances
of the problems of symmetric TSP which are available on the Internet.

The second topic of the thesis, presented in Chapter 4, elaborates the Traveling
Visitor Problem. This chapter describes a problem and examples of real cities and
finally solves the instances of the problem by using new methods.

1.3 Research Objectives

Research objective of the thesis is to prove the following hypotheses 1 and 2.
Proofs of hypothesis 1 and the hypothesis 2 are in the Chapter 3 and Chapter 4,
respectively.

• Hypothesis 1: The method for solving of TSP that is made of two indepen-
dent methods, genetic algorithm and 2-opt heuristic, outperforms each of the
combined methods in terms of the quality of solution.

• Hypothesis 2: The quality of solution of a special method to the problem of
a traveling visitor problem, outperforms algorithms for solving general TSP
problem when they are used for solving traveling visitor problem.

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 4

Contributions to the science consist of the following results:

• Construction of the grafted genetic algorithm for solving the traveling salesman
problem.

• Verification that the traveling salesman problem can be successfully solved
using the grafted genetic algorithm.

• Construction of the special method for solving the traveling visitor problem.

• Construction of the real case instances of the traveling visitor problem for cities
of Koper, Belgrade and Venice.

• Verification that all instances of the traveling visitor problem, which are solved
using the special method, represent a very satisfactory solution.

The results of the thesis represents the contribution to bridging the gap between
theoretical computer science and its application in practice. Also to better under-
standing and modeling of real problems in the economy, represented as the NP-hard
problems from graph theory as well as a contribution to the optimization methods
for solving these hard problems.

The results of this PhD Thesis are published in the following articles:

• M. Djordjevic, Influence of Grafting a Hybrid Searcher Into the Evolutionary
Algorithm, Proceedings of the 17th International Electrotechnical and Computer
Science Conference, Portoroz, Slovenia (2008), 115–118.

• M. Djordjevic, and M. Tuba, and B. Djordjevic, Impact of Grafting a 2-opt
Algorithm Based Local Searcher Into the Genetic Algorithm, Proceedings of
the 9th WSEAS international conference on Applied informatics and commu-
nications, AIC 2009, Moscow, Russia (2009), 485–490.

• M. Djordjevic, and A. Brodnik, Quantitative Analysis of Separate and Com-
bined Performance of Local Searcher and Genetic Algorithm, Book of Abstract
of International Conference on Operations Research, OR 2011, Zurich, Switzer-
land (2011), 130.

• M. Djordjevic, and A. Brodnik, Quantitative Analysis of Separate and Com-
bined Performance of Local Searcher and Genetic Algorithm, Proceedings of
the 33rd International Conference on Information Technology Interfaces, ITI
2011, Dubrovnik, Croatia (2011), 515–520.

• M. Djordjevic, A. Brodnik and M. Grgurovic, The Traveling Visitor Problem
and Koper Algorithm for Solving It, accepted by 25th Conference of European
Chapter on Combinatorial Optimization, ECCO2012, Antalya, Turkey.

• M. Djordjevic, A. Brodnik and M. Grgurovic, The Traveling Visitor Problem
and Algorithms for Solving It, accepted by 3rd Student Conference on Opera-
tional Research, SCOR 2012, Nottingham, UK.

Chapter 2

Background

2.1 Traveling Salesman Problem

In this chapter we introduce the basic concepts of optimization and related com-
binatorial problems. Among those problems, probably best known is the Traveling
Salesman Problem [5,53,58,61,62,64,67,73,90,97], which we describe in this section
in some detail. We illustrate the computational properties of the Traveling Salesman
Problem which is closely related to many optimization problems arising in real world
applications. We refine some graph theoretical approaches, which can be applied
when attempting to tackle traveling salesman like problems. Traveling Salesman
Problem can be stated as follows. Including his home town, a salesman wants to
visit n cities and then return home. The finish line is to find a tour visiting each city
exactly once while minimising the total distance traveled. The problem of finding a
minimal tour is equivalent to finding an optimal ordering of the set of cities. The
TSP is consequently often formulated as a permutation problem. Given a set of n
cities {c1, c2, ..., cn} and for each pair of cities (ci, cj) a distance d(ci, cj). The goal
is then to find a permutation π of the cities which minimises the length of the tour
given by:

n−1
∑

i=1

d(cπ(i), cπ(i+1)) + d(cπ(n), cπ(1)). (2.1)

As mentioned before, the TSP has attracted the focus of researchers for decades.
According to a survey on the history of combinatorial optimization by [121], the TSP
was formulated as early as 1832 in a German manual for the successful traveling
salesman before it was presented as a research problem by Menger in the 1930’s.
Since then, the TSPs simplicity on the one hand and the difliculty of finding optimal
solutions on the other has affirmed it as a test bed for new heuristics and exact
algorithms. But, the problem is not only a theoretical thing as there are many real
life applications of the Traveling Salesman Problem and its variants [76, 111] some
of which we will describe later in this chapter. Let us now introduce the Traveling
Salesman Problem in mathematical terms as an integer programming problem. Take

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 6

up variables xi,j which are either equivalent to one if the city j is straightly visited
after city i or zero otherwise. The Traveling Salesman Problem may be established
as an integer program [81] as follows:

Minimise
n
∑

i=1

n
∑

j=1

d(ci, cj)xi,j,

Subject to
n
∑

i=1

xi,j = 1,∀j = 1, 2, ..., n,

n
∑

j=1

xi,j = 1,∀i = 1, 2, ..., n,

∑

i∈I

∑

j /∈I

xi,j ≥ 1, I ⊂ {1, 2, ..., n} with 1 < |I| < n,

and xi,j ∈ {0, 1} ,∀i, j = 1, 2, ..., n,

(2.2)

Here, our goal is to give the sum of all combination variables xi,j weighted by the
lengths between the cities. This function is subject to a number of constraints. The
constraints stated first and second inflict each city to be visited exactly once as a
part of the tour. The constraints denoted third are the so called sub-tour avoidance
constraints which are needed to guarantee that the solution represents a connected
tour. The presentation of the Traveling Salesman Problem as an integer program
shown above is not unique; there are various representations, see for example [109].
In the next subsections we will present some important notions for optimization
problems and the Traveling Salesman Problem, together with a review of problems
similar to the TSP.

2.1.1 Graph representation

Traveling Salesman Problem is ordinarily represented and considered as a graph
theoretical problem [76,81]. This representation is suitable because many algorithms
for the TSP are established on graph theoretical concepts. Here, I present some graph
theoretical definitions needed to represent the Traveling Salesman Problem in graph
theoretical terms.

An undirected graph G = (V,E) consists of a finite set of vertices (or nodes) V
and a finite set of edges E. Each edge e ∈ E correspond to a set e = {u, v} of two
vertices u, v ∈ V . An edge e = {u, v} is incident to vertices u and v and the number
of edges incident to a vertex is the degree of the vertex. In the situation where there
exists an edge e = {u, v} between each pair u, v ∈ V we speak of a complete graph.

Now, some concepts of the Traveling Salesman Problem will be presented. If
P = ({u1, u2} , {u2, u3} , ..., {uk−1, uk}), where {ui, ui+1} ∈ E, then P is called a
walk. If further ui 6= uj for all i 6= j it is called a path. A closed path, where
P = ({u1, u2} , {u2, u3} , ..., {uk, u1}), i.e. a path plus the edge returning to the vertex
it started from, is referred to as a cycle. Graphs are often classified according to their
properties. For the TSP two important classes are the Eulerian and the Hamiltonian

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 7

graphs. A graph is called Eulerian if it contains an Eulerian Tour, which is a closed
walk traversing every edge of the V . Similarly a graph is called Hamiltonian if there
exists a cycle in G visiting every vertex of the graph, this cycle is called a Hamiltonian
Cycle. For many applications of the TSP it is worthy to measure the qualities of
a walk, path or tour in comparison to others and weights are associated with each
edge of the graph. Given such a graph we speak then of a weighted graph. Since a
walk, path or tour can be described by the set of edges traversed, P , its quality can
be valuated by a weight or cost function c : P −→ Q mapping edge set P into the set
of the rational numbers Q. Let ci,j refer the weight of edge {i, j}, then the weight
of an edge set P is then specified as the sum over all the edges of P :

∑

{i,j}∈P

ci,j. (2.3)

For a tour or a path the sum of weights of its edges is commonly specified to as
its length. Let us now determine the symmetric TSP (STSP) [71, 72, 91, 95]. In the
STSP the distance between nodes i and j is equal to the distance between nodes j
and i. An instance of a TSP can be seen as a complete graph G = (V,E) where the
set of vertices V is given by the cities and edges in the graph with corresponding
edge weights ci,j are given by the distances between cities. The Traveling Salesman
Problem is then equal to the problem of finding a Hamiltonian Tour of minimal
length in the graph G. For many applications it is useful to correlate a direction
of the edges of a graph. Because the weights between vertices are not necessary
symmetric, i.e. ci,j 6= cj,i, for some edges of G. This kind of graph is called directed
graph or digraph and its edges are ordered 2-tuples of vertices, usually referred to as
arcs. For arcs we have to distinguish between the arcs leading to and leading from a
vertex. The concepts we summarized above for path, walk, tour, Hamiltonian and
Eulerian tour can be modified easily to take the directions of the edges into account.
The asymmetric traveling salesman problem (ATSP) [14, 16, 18, 24] is then similar
to the symmetric TSP above, i.e. it is the problem of finding a Hamiltonian Tour
of minimal length in a complete digraph). The Euclidean TSP, or planar TSP, is
the TSP with the distance being the ordinary Euclidean distance. The Euclidean
TSP [55,110] is then a particular case of the metric TSP, since distances in a plane
obey the triangle inequality.

2.1.2 Computational complexity

As was mentioned at the start of this section the Traveling Salesman Problem
is a very hard combinatorial optimization problem. In order to evaluate algorithms
according to their computational requirements the theory of Computational Com-
plexity has been developed. Informally, the computational complexity deals with the
number of computational steps an algorithm needs to solve an instance of a problem
of size n. Since an algorithm can be described as a "step-by-step procedure" [74],
the number of computational steps performed introduces a measure on the execu-
tion time required to solve an instance of a problem of a given size. However, as the
number of steps an algorithm requires is often not only dependent on the size of the
problem instance, but may also differ between instances of same size. Because, it is

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 8

not always straightforward to estimate the number of steps an algorithm needs for
a given instance. In order to be able to analyse the complexity of an algorithm, a
worst-case analysis is introduced. Here, the computational complexity is defined as
the maximum number of steps an algorithm may require for any instance of a given
size.

In summary, the performance of an algorithm is measured as the maximum num-
ber of steps it requires for any problem instance of size n denoted as a function
of n. A widely accepted concept is that an algorithm is effective if its worst-case
complexity is bounded by a polynomial function of instance size n while algorithms
of exponential time complexity are usually considered ineffective or computationally
expensive [74]. Although an exponential function may initially give smaller values
than a given polynomial, there always exists a constant N such that for all n ≥ N
the polynomial function takes smaller values than the exponential [81].

The Classes P and NP

The concept described above can be used to classify an algorithm as efficient or
not depending on whether it has polynomial time complexity. Similarly a problem is
considered easy or hard depending whether there exists a polynomial time algorithm
for solving it. This means a problem is considered easy if there is an algorithm
where in the worst case the number of steps of the problem of size n is bounded by a
polynomial of n. The main purpose to investigate the computational complexity of
decision problems is that there exist efficient methods for concerning the complexities
of different decision problems. Decision Problems consist of an instance of a problem
and a question to which the answer is ’yes’ or ’no’. An example of a decision problem
related to the TSP is the Hamiltonian Cycle Problem [81]:

Problem 2.1.1 Instance: Graph G = (V,E) Question: Does there exist a cycle in
G passing through each vertex in V exactly once?

As we described above, looking from the graph theoretical point of view, the TSP
is equivalent to finding a Hamiltonian cycle of minimum length in a complete graph
G. As a consequence, for the TSP decision problem the main question is not whether
a cycle exists in a complete graph G but if there exists a cycle of length less than a
given constant B. The TSP Decision Problem can then be stated as follows [81]:

Problem 2.1.2 Instance: Given a complete weighted graph G = (V,E) with non-
negative edge weights ωi, for i ∈ E and a constant B ≥ 0 Question: Does there exist
a Hamiltonian cycle in G (or Traveling Salesman Tour) with edge sequence S where
∑

i∈S wi ≤ B ?

Even one may see that if there exists a polynomial time algorithm for the TSP
there also exists a polynomial time algorithm for the TSP Decision Problem. On
the other hand it is not so evident and after all true that the converse holds as
well. A polynomial time algorithm for generating the optimal TSP tours by calling
a subroutine that solves the TSP Decision Problem is presented by Johnson and
Papadimitriou in [74]. Supposing that the TSP decision problem can be solved

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 9

in polynomial time, this algorithm, provides a polynomial time algorithm for the
Traveling Salesman Problem. This is a type of polynomial time reduction [32].
Additionally the presence of this algorithm proves the following theorem [74]:

Theorem 2.1.3 There exists a polynomial time algorithm for the TSP if and only
if there exists a polynomial time algorithm for the TSP Decision Problem.

This theorem indicate that when researcher is interested in the computational
complexity it is adequate to restrain focus to the TSP Decision Problem. That’s
why the question of whether the TSP is a "hard" to solve problem is equivalent
to whether the TSP Decision Problem is a "hard" problem. Let us now introduce
the two classes of problems in the theory of computational complexity. The class
P consists of all decision problems for which exists a polynomial time algorithm.
There exists problems which are likely not in P for many combinatorial optimization
problems. Nevertheless, it is not easily shown that certain problems are not in P even
if no polynomial time algorithm is known. To specify the second class of algorithms
we must first define the concept of non-deterministic algorithms.

In contrast to the deterministic algorithm, a non-deterministic algorithm can
exhibit different behaviors on different runs. The class NP are composed of all
decision problems which can be solved in polynomial time by an non-deterministic
algorithm. It is obvious that P ⊆ NP . In spite of that, the question of whether
P = NP denote one of the major question of the computer science community. A lot
of research has been spent on this challenge over the last five to six decades and the
fact that no polynomial-time algorithm for specific problems in NP has been found,
makes the equivalence of both classes very unlikely. Because of this, it is widely
assumed that P 6= NP , even though this conjecture remains unproven to present
date.

The Class NP-Complete

Very important subset of problems in NP is the class of NP−complete problems.
The most important property of NP-complete decision problems is that their compu-
tational status is directly connected to the relation between P and NP . The concept
of NP-completeness was introduced in [26]. Regrettably, concerning the Traveling
Salesman Problem, it has been shown that it belongs to the class of NP-complete
problems. As Johnson and Papadimitriou comment in [74]:

This is our main negative result for the TSP; it is the strongest neg-
ative result one can hope to prove, short of establishing P 6= NP .

In contrast to the consideration that the TSP is not NP- complete as it is not a
decision problem. Before in the chapter we have mention a polynomial time algorithm
for the TSP which directly lead to a polynomial time algorithm for the TSP Decision
Problem and also its NP-completeness imply that P = NP . Problems which have
this property are referred to as NP-hard problems.

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 10

2.1.3 TSP Applications

Applications of the TSP and its variations go way over the route planning prob-
lem of a traveling salesman and spans over several areas of knowledge including
mathematics, computer science, operations research, genetics, engineering, and elec-
tronics. In the next three subsections I summarize, from the dissertation point of
view, the most important applications of TSP studied in the literature.

Machine Scheduling Problems

Maybe the most studied application area of the Traveling Salesman Problem is
sheduling and machine sequencing. A simple scheduling application can be described
as follows. There are n jobs {1, 2, ..., n} to be processed consecutive on a machine.
Let ci, be the setup cost required for processing job j instantly after job i. When
all the jobs are processed, the machine is reset to its original state at a cost of
ci,j, where j is the last job processed. Therefore the machine sequencing problem
is to find an order in which the jobs are to be processed such that the total setup
cost is minimized. Obviously, finding a permutation π of {1, 2, ..., n} that minimizes
Equation 2.4 solves the problem.

cπ(n)π(1) +
n−1
∑

i=1

cπ(i)π(i+1) (2.4)

Looking from the practical point of view the jobs can be often clustered together.
In this case the setup time, if any, between jobs within a cluster is relatively small
compared to setup time between jobs in two different clusters. For example this can
be one of typical scenario in assembly line. Assembling the similar products need
minimal setup time. But if a different product needs to be assembled, the setup time
may grow larger because it may require the new parts, tools etc. So the machine
sequencing problem with such a specialized matrix of costs reduces to the Clustered
TSP, this problem will be, in more detail, presented latter in desertation.

Let as now look at another scheduling problem-a no wait flow shop problem.
There are n jobs each demanding processing on m machines in the order 1, 2, 3, ...,m.
No job is approved to have a waiting time between processing on two sequential ma-
chines. The goal is to find an optimum sequencing of jobs to be processed so that the
total completion time is minimal. Applications of this kind of sequencing problems
rise in a different situations, for more details one can looks at [43]. Furthemore,
the no-wait flow shop problem is strongly NP-hard, but solvable in polynomial time
when m = 2. In this particular case it reduces to the well known Gilmore-Gomory
problem [61].

From an instance of the no-wait flow shop problem, it can be constructed an
equivalent instance of TSP and so using the reduction proposed in [43]. Create a
complete graph G on n+1 nodes, where node represent a job j, 1 ≤ j ≤ n and node
n+1 represents both the start and the end of processing. The cost ci,j of edge (i, j)
in G represents the additional schedule length if job j is the direct successor of job
i in the schedule. So a minimum cost tour in G represent a schedule with minimum
completition time. To finish the reduction, the values of ci,j must be identified. Let

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 11

pj,k be the processing time of job j on processor k, and also 1 ≤ j ≤ n, 1 ≤ k ≤ m.
Then ci,j can be obtained using the equations [43]:

cn+1,i =
m
∑

r=1

pir, i = 1, 2, ..., n,

cij = max1≤k≤m

{

k
∑

r=1

pir +
m
∑

r=k

pjr

}

−
m
∑

r=1

pir, 1 ≤ i, j ≤ n, i 6= j

ci,n+1 = cii = 0, i = 1, 2, ..., n.

(2.5)

These applications that we considered so far reduce a given problem to the Trav-
eling Salesman Problem.

For details of other research works on printed circuit board assembly that are
relevant to the TSP, but goes beyond the scope and aim of the dissertation, we refer
to [8, 61].

Arc Routing Problems

A general arc routing problem, in addition known as mixed windy rural postman
problem (MWRPP) [61], can be stated as follows. Let G = (V,A ∪ E) be a mixed
graph in which the elements of A are arcs and elements of E are edges. Let A′ ⊂ A
and E′ ⊂ E. The costs of arcs and edges are assumed to be non-negative. To solve
the MWRPP is then to find a minimum cost closed walk on G containing all arcs
in A′, and all edges in E′. Few problems such as, for example, windy rural postman
problem, mixed chinese postman problem, windy chinese postman problem, stacker
crane problem [25], etc. are special cases of MWRPP. Applications of MWRPP in
addition include street sweeping and snow plowing.

The instance of the MWRPP can be solved as an instance of the asymmetric
TSP. If we in G, replace each edge (i, j) by two arcs (i, j) and (j, i) with cost equal
to that of (i, j). And let Ḡ = (V, Ā) be the resulting digraph. And we define
A′ = A′∪

{

(i, j), (j, i) ∈ Ā : (i, j) ∈ E′
}

. Furthemore, we now formulate a generalized
TSP on the digraph D = (U,Z). And for each arc (i, j) ∈ Ā′ there is a node uij in U .
Then the cost of arc (uij , upq) ∈ Z is defined as the length of the shortest path from
node i to node q in Ḡ. Finally, the MWRPP is equivalent to a GTSP on D where the
node set partition {U1, U2, ..., Um} is given by Ul = {uij} if (i, j) ∈ A′, l = 1, 2, ..., |A′|
and Ul = {uij , uji} if (i, j) ∈ E′, l = |A′| + 1, ..., |A′| + |E′|. The Generalized TSP
will be explained in more detail in the next subsection of this chapter.

Frequency Assignment Problem

If we look a communication network together with a set of transmitters, the
Frequency Assignment Problem is to specify a frequency to each transmitter from a
given set of available frequencies. The frequencies must satisfying some interference
constraints. These constraints can be denoted by a graph G = (V,E) in which each
node denotes a transmitter. A non-negative integer weight cij is appointed for each
arc (i, j) denoting the tolerance. Let F = {0, 1, 2, ..., R} be a collection of available
frequencies. A frequency assignment is then to assign the number f(i) ∈ F to node

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 12

i ∈ V such that |f(i)− f(j)| > cij for all (i, j) ∈ E. If such an assignment exists,
then it is called a feasible assignment. If R is enough large a feasible assignment is
possible. Let us consider the following, let G∗ be the complete graph obtained from
G by adding edges of zero weight. Let c′i,j be the weight of edge (i, j) in G∗ such that
c′ij = cij + 1. Finally, let C ′(H∗) be the sum of the weights of edges in a minimal
cost Hamiltonian path in G∗. Then the TSP can be used to compute a lower bound
for the frequency assignment problem [61].

2.1.4 More Variations of the TSP

Our discussion on next variations are confined to their definitions only and practi-
cal implementations for some variations. For more details on these problems, see the
corresponding references cited. Also, the references I cite are not necessarily a paper
in which the problem was introduced. Below I summarize, from the dissertation
point of view, the most important variations of TSP studied in the literature.

The time dependent TSP: For each arc (i, j) of graph G, n of different costs
ctij, t = 1, 2, ..., n are given. The cost ctij represent the cost of traveling from city i
to city j in some time period t. The goal is to find a tour (π(1), π(2), ...π(n), (1)),
where π(1) = 1 represents the home location, which is in the time period zero, in
graph G such that

∑n
i=1 c

i
π(i)π(i+1) is minimized. The index n+1 is equivalent to 1.

For all arcs (i, j), if c1ij = c2ij = . . . = cnij then this problem, the time dependent TSP,
reduces to the TSP. For more details on this particular problem, we refer to [57].

Black and White TSP: The black and white TSP is a generalization of the
Traveling Salesman Problem. In this problem, the set of nodes of G is partitioned
into two sets, B and W The elements of set B are called black nodes and the
elements of set W are called white nodes. A tour in G is feasible if the following
two conditions are satisfied. The number of white nodes between any two sequential
black nodes should not go beyond a positive integer I and the distance between any
two sequential black nodes should not go beyond a positive real number R. The black
and white TSP is to find a minimal cost feasible tour in graph G. Applications of this
problem involve design of ring networks in the industry of telecommunication [61].
Furthemore, a variation of this problem known as TSP with replenishment arcs, has
been applied in the air-line industry. The TSP with replenishment arcs has been
discussed in [96].

The delivery man problem: The delivery man problem (DMP) is also known
as the minimum latency problem [11] and the traveling repairman problem [51]. Let H
be a tour in G and v1 be a starting node. For each vertex vi of G, define the latency of
vi with respect to H denoted by Li(H), is the total distance in H from v1 to vi. The
delivery man problem is then to find a tour H∗ in graph G such that

∑n
i=1 Li(H

∗)
is as small as possible. The DMP is strongly NP-complete. Additionally it can be
verified that this problem is a special case of the time dependent TSP. For more
details on this problem, we refer to [61].

Clustered TSP: In this vatiation of TSP, the node set of G is partitioned into
clusters V1, V2, ..., Vk. Then the clustered TSP [63] is to find a minimum cost tour
in graph G with the constraint that nodes within the same cluster must be visited
consecutively. By adding a large cost M to the cost of each inter-cluster edge this

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 13

problem can be reduced to a Traveling Salesman Problem.
Generalized TSP (GTSP): As in the case of clustered TSP, let V1, V2, . . . , Vk

be a partition of the node set of graph G. In a GTSP, the goal is to find a shortest
cycle in graph G which goes through exactly one city from each cluster Vi, 1 ≤ i ≤ k.
If |Vi| = 1 for all i, GTSP is the same as Traveling Salesman Problem. Using
the reduction described in [108] we show that GTSP can be reduced to a TSP for
arbitrary |Vi|. WLOG, we can assume that graph G is a digraph and the partitions
are numbered in such a way that |Vi| ≥ 2 for 1 ≤ i ≤ r and |Vi| = 1 for r+1 ≤ i ≤ k.
For any i ≤ r let Vi = {i1, i2, ..., in}. For each arc e ∈ E, consider a new cost de
defined as follows:

dij ij+1
= −M, j = 1, . . . , ni with ni + 1 ≡ 1, i = 1, ..., r. (2.6)

This guarantee that if a minimal TSP tour in graph G enters a cluster Vi through
node ij , it visits nodes of Vi in the order ij , ij+1, ..., ini

, i1, ..., ij−1 and leaves the
cluster Vi from the node ij−1. We now want to interpret this outcome equivalent to
a GTSP tour entering and leaving the cluster Vi by visiting node ij . To duplicate
this fact, we make the new cost of arcs going out of ij−1 represents to the original
cost of arcs leaving ij. To be more precise look at Equation 2.7.

dij−1p = cijp, p /∈ Vi, j = 1, 2, ..., ni with index 0 ≡ ni, i = 1, ..., r (2.7)

and duv = cuv for all other edges. From a minimal solution to the TSP on graph
G with the modified costs de for e ∈ E, a minimal solution to GTSP can be recovered.
For more details on this problem, we refer to [60, 77].

The MAX TSP: In contrast to the TSP, the objective in the MAX TSP is to
find a tour in graph G where the total cost of edges of the tour is maximum. This
problem can be solved as a TSP by just replacing each edge cost by its additive
inverse. If problem requires that the edge costs are non-negative, a large constant
could be added to each of the edge-costs. These replacing will not change the optimal
solutions of the problem. The MAX TSP has been discussed in [61].

Traveling Tourist Problem: A tourist wishes to see all monuments in a city,
and so must visit each monument or a neighbour thereof. Furthemore, it is assumed
that a monument is visible from any of its neighbours. The edges therefore represent
lines of sight. The resulting walk will therefore visit a subset of all nodes in the
graph G. For the Traveling Tourist Problem we refer to the [93].

The bottleneck TSP: In this variation of TSP the objective is to find a tour
in graph G such that the largest cost of edges in the tour is as small as possible. A
bottleneck TSP can be described as a TSP with exponentially large edge costs. For
more details we refer to [61].

TSP with multiple visits (TSPM): In this problem the objective is to find a
routing of a traveling salesman. Salesman starts at a given vertex of graph G, visits
each vertex at least once and comes back to the starting vertex in such a way that
the total distance traveled is minimized. The TSPM can be transformed into a TSP
by replacing the edge costs with the shortest path distances in graph G. In the lack
of negative cycles, shortest path distances between all pairs of vertices of a graph G

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 14

can be computed using efficient algorithms [1]. If graph G contains a negative cycle,
then TSPM is unbounded. For more details on TSPM look in [61].

2.1.5 All-Pairs Shortest Paths

In this section, the problem of finding shortest paths between all pairs of vertices
of graph is considered. Given a weighted, directed graph G = (V,E) with a weight
function ω : E → R that maps edges to real valued weights. The objective is to
find, for every pair of vertices u, v ∈ V , the shortest path from u to v. In addition
the weight of a path is the sum of the weights of its edges. The all-pairs shortest-
paths problem, can be solved, by running a single-source shortest-paths algorithm |V |
times, once for each node as the source. In some particular case where all edge weights
are nonnegative, Dijkstra‘s algorithm [28], can be used for solving the problem. If the
linear-array implementation of the min-priority queue is used, then the running time
is O(V 3 + V E) = O(V 3). Furthemore, the binary min-heap implementation of the
min-priority queue generate a running time of O(V E lg V), which is an improvement
if the graph is sparse. If the graph contains the negative-weight edges, then Dijkstra‘s
algorithm can not be used. Alternatively, the slower Bellman-Ford algorithm can be
run, once from each node. The resulting running time is then O(V 2E), which on a
dense graph is O(V 4). In addition, for solving the all-pairs shortest paths problem on
sparse graphs the Johnson‘s algorithm is used, for more details see [28]. In contrast
to the single-source algorithms, which assume a distance-list representation of the
graph, the Floyd-Warshall algorithm uses a distance-matrix representation.

The Floyd-Warshall Algorithm

The Floyd-Warshall algorithm (FW) is a simple and extensively used algorithm
for computing the shortest paths between all pairs of vertices in an edge weighted
directed graph G = (V,E). The algorithm runs in Θ(V 3). The Floyd-Warshall
algorithm produce the correct result as long as no negative cycles exist in the in-
put graph. The FW algorithm take into consideration the intermediate nodes of a
shortest path, where an intermediate node of a simple path p = 〈v1, v2, . . . , vl〉 is any
node of p other than v1 or vl, that is, any node in the set {v2, v3, . . . , vl−1}. The
Floyd-Warshall algorithm depend on the following observation. During assumption
that the nodes of G are V = {1, 2, . . . , n}, consider a subset {1, 2, . . . , k} of nodes
for some k. For any pair of nodes i, j ∈ V , consider all paths from i to j whose
intermediate nodes are all drawn from {1, 2, . . . , k}, and let p be a minimal-weighted
path from between them. The Floyd-Warshall algorithm take advantage of a rela-
tionship between path p and shortest paths from i to j with all intermediate nodes
in the set {1, 2, . . . , k − 1}. Furthemore, this relationship depends on whether or not
k is an intermediate node of path p.

The running time of the Floyd-Warshall algorithm shown in Algorithm 1 is ap-
pointed by the triply nested for loops of lines 2-4. Furthemore, each execution of line
5 takes O(1) time, so the algorithm runs in time Θ(n3). In addition, the constant
hidden in the Θ-notation is small. Because of that the Floyd-Warshall algorithm is
pretty efficient for even modest sized input graphs.

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 15

Algorithm 1 Floyd-Warshall
1: procedure Floyd-Warshall(V,W)
2: for all k ∈ V do
3: for all i ∈ V do
4: for all j ∈ V do
5: Wij := min(Wij ,Wik +Wkj)
6: end for
7: end for
8: end for
9: end procedure

2.2 TSP Heuristics

In this section, different heuristic approaches that have been recommended in the
literature for the Traveling Salesman Problem will be examined. Heuristics corre-
spond to approximation algorithms with objective to find the near optimal solutions
quickly rather than the best solution there is to a given problem. This section intro-
duces the basic concepts of heuristic approaches for the Traveling Salesman Problem
and give some of the theoretical results that have been examined in the literature.
The scope of the section is mainly concentrate on the classical constructive, local
search approaches and by nature inspired techniques and their extensions. For the
Traveling Salesman Problem these diverse approaches represent the state-of-the-art
when the objective is to find satisfactory solutions quickly. The expression heuristic
is interpreted in the Oxford dictionary as:

a method for solving problems by learning from past experiences and
investigating practical ways of finding a solution

The goal of heuristic approaches is to find satisfactory or close to optimal solu-
tions quickly instead of finding a global optimal solution. Heuristic approaches for
the Traveling Salesman Problem have been presented in several surveys. For the com-
prehensive overview of the heuristic tehniques, we refer a reader of the dissertation
to the surveys [72, 76] and to a book on the TSP and its variants [61].

2.2.1 Tour Quality

The classic measure of the quality of a tour length is the gap to the optimal tour
length. This gap is commonly demonstrated as the pass over optimum. For instance
I this gap can be formally shown as:

A(I)−OPT (I)

OPT (I)
× 100%. (2.8)

Luckily, the standard test beds, such as Reinelt’s TSPLIB [119], provides a wide
set of instances which also includes the optimal tour length for all test instances.
The optimal tour lengths are usually unknown for instances of sizes or structure

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 16

that cannot be solved to optimality in a reasonable amount of time. So a different
reference point is needed. Those reference points present one of values which are
close to the optimal tour length. Furthemore, the reference point of choice is as a
consequence commonly a lower bound on the optimal solution.

The standard lower bound for the TSP is the Held-Karp lower bound [67]. The
Held-Karp lower bound on the optimal solution corresponds to the solution of a linear
programming relaxation [23] of the standard integer programming formulation of the
TSP. This imply that the integer constraints of the integer programming problem
are substitute with bounded variables. Furthemore, the resulting linear programming
problem [128] is then solved to optimality by using an algorithm such as the simplex
method [31]. Even if the resulting linear program consist an exponential number
of subtour constraints it can be solved in polynomial time because there exists a
polynomial time "seperation oracle" for the subtour constraints based on calls to a
max-flow algorithm [78]. Experimental results which is presented in [61] show that
this lower bound is very close to the optimal length in most cases.

2.2.2 Tour Construction Algorithms

The objective of tour construction approaches is to build a tour for an instance of
traveling salesman problem from scratch. This is commonly achieved by constructing
a tour following some construction rule. Determinations during the construction of a
tour are mostly made in a greedy fashion. The objective of these methods is an im-
mediate gain instead of looking ahead. There are many constructive heuristics which
have been suggested for the TSP. For a comprehensive overview of tour construction
approaches for the TSP look in [10, 120]. For an extensive empirical performance
testing of the tour construction approaches for the symmetric TSP, especially the
Euclidean TSP see [61, 120].

The tour construction approaches described in the next subsections were chosen
because of their suitability to symmetric especially Euclidean instances of Traveling
Salesman Problem. Two basic and from the dissertation point of view important tour
construction approaches are the Nearest Neighbour and the Insertion heuristics.

Nearest Neighbour Heuristic

The Nearest Neighbour algorithm is one of the most intuitive heuristic algorithms
for the Traveling Salesman Problem. The salesman starts at an arbitrary chosen node
and then successively travels to the nearest node he has not yet visited. When all
nodes have been visited, salesman returns to the node he started from. The pseu-
docode of this algorithm for a set of nodes i.e. cities C = {c1, c2, ..., cn} is shown
in Algorithm 2. The Nearest Neighbour algorithm has a computational complexity
of O(n2) which can be reduced to O(n log n) for geometric instances [10]. The best
performance ratio known for the instances of TSP satisfying the triangle inequality
is given by NN(i)

OPT (i) ≤ 0.5 (blog2 nc+ 1), see [72], and therefore growing in n. Never-
theless, in the case where the triangle inequality is not satisfied one can expect the

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 17

performance ratio to be even worse. In the literature exists various variants of the
Nearest Neighbour approach with objective to improve its performance. One such
variant is the Double Ended Nearest Neighbour [120], where the tour is built from
both ends of the current sequence. Another variant is so-called Randomised Nearest
Neighbour, where the city to be visited next is chosen randomly from a set of nearest
neighbours [61].

Algorithm 2 Nearest Neighbour
1: procedure NearestNeighbour(C)
2: Select arbitary city cj , set k = j and C = {c1, ...cn} \ cj
3: while (C 6= 0) do
4: Determine cl ∈ C with d (ck, cl) = mincj∈C(d(ck, cj))
5: Add cl to the tour by connecting ck to cl and set c← C \ cl and k = l
6: end while
7: Connect ck to starting city cj
8: end procedure

Insertion Heuristic

For the insertion heuristics a different construction rule is followed. The algorithm
start with a subtour consisting of one or two cities. Then it successively add cities
to the current subtour. This adding is followed by some selection criteria. The
pseudocode of this approach is presented in Algorithm 3.

Algorithm 3 Insertion
1: procedure Insertion

2: Select a starting tour through k cities T = {c1, c2, . . . , ck}
3: repeat
4: Select a city ci with ci /∈ T following some criteria
5: Insert city ci into the current subtour T
6: until ci /∈ T, i = 1, 2, ..., n
7: end procedure

From the description of the algorithm three questions arise: From which city
or cities to start the heuristic? Which city to insert next? Where to insert it into
the current subtour? For each of these questions various decision rules have been
proposed in the literature. The set of cities which construct the starting subtour is
commonly chosen at random and consists of one, two or three cities. For Euclidean
problems other approaches such as starting the heuristic from the convex hull of the
problem have been also suggested [120]. The last two questions, to which city to
insert next and where to insert it are tightly related. Some selection rules are:
1. Nearest Insertion: Insert the city which is not yet part of the tour and is nearest
to any city already part of the tour,
2. Farthest Insertion: Insert the city that is not yet part of the tour whose minimal

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 18

distance to a city, already part of the tour, is maximal,
3. Cheapest Insertion: Insert the city which is not yet part of the tour whose insertion
results to the minimal increase in tour length of the current subtour.
4. Random Insertion: Select the city to be inserted randomly out of the set of cities
that are not yet part of the tour. For an empirical analysis of Insertion Heuristics
with different insertion criteria look in [120]. Nearest insertion, farthest insertion
and random insertion can be implemented to run in time O(n2). Cheapest insertion
has time complexity O(n2 log n) and so is computationally more expensive.

2.2.3 Local Search Algorithms

Local search algorithms for the Traveling Salesman Problem are built on simple
tour adjustments. A local search algorithm is construted from operations called
moves which are used to transform one tour to another. The local search is actually
a neighborhood search process where each tour has an associated neighborhood of
tours. The local search algorithm repeatedly moves to a better neighbor as far as no
better neighbors exist. These moves which have been proposed for the TSP can be
generaly divided into operators of node exchange, node insertion, and edge exchange.
The node exchange operator work in such a way that it exchanges two nodes in the
sequence. On the other hand the node insertion operators work by deleting a node
from a tour and inserting it at another position in the tour. The edge exchange
operators exchange the edges in the tour and will be described in detail in after
section. For the example of the TSP a tour t∗, is called locally optimal when all other
tours in its neighbourhood are at least as long as t∗. To identify a local optimum, the
neighbourhood of an initial tour is searched for a solution of better quality. When
a new best solution s′, has been found, it is accepted and its neighbourhood N(s′)
is explored. This process is repeated as far as no more improvements can be found.
A pseudocode using above notifications of solutions and neighbourhoods is given in
Algorithm 4.

Algorithm 4 Local Search
1: procedure LocalSearch

2: Create feasible Solution s
3: Choose a neighbourhood function N
4: repeat
5: Search neighbourhood N(s)
6: if (s′ with f(s′) < f(s) found) then
7: Set s = s′

8: end if
9: until no feasible lower cost solution s‘ is found

10: end procedure

The objective of local search algorithm is to consecutively apply improving moves
to the solution in order to explore the neighbourhood introduced by N . For the TSP
this neighbourhood is commonly based on simple tour modifications.

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 19

Figure 2.1: Edge removal and reconnection of 2-opt algorithm

k-opt Local Search

Among simple local search algorithms, the most famous are k-exchange neigh-
bourhood which is an example of edge exchange algorithm. The k-exchange neigh-
bourhood is for the Traveling Salesman Problem commonly referred to as k-opt. For
the TSP this local search can be defined as follows. Let S corresponds to the set of
all tours of a TSP instance. Let us also introduce a metric p between tours in S,
which measures the distance between tours with the number of edges not mutual to
both, i.e. the number of edges which represent part of tour T but not part of tour
T ′. The k-opt local search can then be stated by:

Nk(T) =
{

T ′|p(T, T ′) = k, T ′ ∈ S
}

.

From the above definition the reader can see that this statement introduces a whole
set of search neighbourhoods which is parameterised by k. Usually, the higher the
k of a k-opt local search, the better the resulting tours. In spite of this, since the
neighborhood size grows exponentially with k, only small k appear to be practical.

2-opt

The 2-opt local search illustrates the simplest of the k-opt local search algorithms
for the TSP. The 2-opt algorithm was first proposed in [29], even though the basic
move had already been suggested in [47]. This move deletes two edges, as a conse-
quence the tour is aparted into two segments, and then algorithm reconnects those
segments in the other possible way. A schematic illustration of this edge removal
and reconnection approach is presented in Figure 2.1.

Just as is shown in the figure, this operation is equal to a tour segment reversal.
The order of the tour segment B, ..., C is reversed with respect to C, ..., B. For the
Euclidean TSP, 2-opt local search removes the crossings of edges in the tour. For
symmetric TSPs a 2-opt move usually produce an improvement to the current tour
if d(A,C) + d(B,D) < d(A,B) + d(C,D). There exist two different representations
of a 2-opt move, i.e. the move presented in the Figure 2.1 is equivalent to the move
where the tour segment between D and A is reversed. Since for a 2-opt move to

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 20

denote an improvement either d(A,B) > d(B,D) or d(C,D) > d(A,C) or both
must hold. Because of this the attention can be concentrate on moves satisfying
d(A,B) > d(B,D). This imply that once A and B are fixed we can limit the search
for an improving move on cities D that are closer to B than A.

So to take advantage of this feature Steiglitz and Weiner [124] introduce a data
structure to specify suitable candidates quickly. And so, storing for each city a list
of the remaining cities sorted with increasing distances. When seeking for a 2-opt
move, one has to start at the beginning of the list of B, move forward through the
list observing its members until d(A,B) ≤ d(B,D). The difficulty of this approach is
that creating the lists is of time complexity Θ(n2 log n) and requires space quadratic
in n. As a consequence in practice this list is commonly restricted to only k-nearest
neighbours for each city with fixed k. Even if the resulting tour may not be locally
2-optimal, as not all possible moves are considered. In the practice, in general, only
a small loss of tour quality is reported [72].

The Lin-Kernighan Algorithm

For over 30 years the world’s champion heuristic for the Traveling Salesman
Problem was usually recognized to be the local search algorithm of Lin and Kernighan
(LK) [94]. This algorithm is both a generalization of the 2-opt local search algorithm
and an outgrowth of ideas the same authors had previously applied to the graph
partitioning problem. The fundamental idea of the LK heuristic is to build up
complex moves by combining simple submoves to replace a variable number of edges.
Because of this property this tehnique is also called a variable depth k-opt. The
submoves commonly employed are 2-opt and 3-opt moves. The LK heuristic can be
described as follows. In each step, the tour is broken up at one node forming a 1-tree
(a spanning tree with an extra edge). This 1-tree can be with ease transformed into a
possible TSP tour by breaking up one edge of the degree-3 node and connecting the
two degree-1 nodes. Consequently the heuristic performs sequential changes of edges
until no further exchanges are possible or until the best k-change in an iteration is
found. A more comprehensive description of the LK algorithm would go way beyond
the scope of a dissertation and can be found in the paper by Lin and Kernighan [94].
The original Lin-Kernighan heuristic was suggested for the symmetric TSP only.

A main drawback of the LK algorithm, besides the high effort needed for its im-
plementation, is its rather long running time. Because of this, several improvements
to the original algorithm have been made. In the paper [120] Reinelt, describes a
variant of LK algorithm using the segment reversals and node insertion. In this
variant a special 3-opt move consists of a single city to enlarge the Lin-Kernighan
neighbourhood. Some different approaches can be found in [134], and in [117]. In
this two papers the search neighbourhood is the so called flower transition, firstly
suggested by Glover in [54] where the base is a 1-tree consisting of a cycle and a
path attached to it. A effective variant of LK heuristic based on a sequence of 5-opt
moves instead of 2-opt segment reversals was suggested in 2000 by Helsgaun [68].
The estimation of these move sequences is accomplished by considering very small
candidate lists which are determined in a very complex manner. Other approaches

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 21

and variants of the LK heuristic have try to beat problems produced by very large
TSP instances. Otherwise, to make the Lin-Kernighan searches perform better on
the problematic instances of TSP [6]. Even though the variant of LK heuristic pro-
posed by Helsgaun [68] is commonly the most successful one, when only a tour quality
is considered. Otherwise, it is hard to say which one of these variants is the most
effective. For a comparison of the Lin-Kernighan implementations we refer a reader
of a dissertation to a Johnson and McGeoch work on heuristics for the symmetric
Traveling Salesman Problem [73].

2.2.4 Nature Inspired Algorithms

The area of nature-inspired computing has grown in popularity over the last fifty
years. Many of the nature-inspired algorithms currently in use are being applied
to a wide range of problems, among them are of course ones tackling the Traveling
Salesman Problem. The term nature is used to refer to any component of the
universe which is not a product of planned human design. The nature-inspired
algorithms are in the category of the metaheuristic algorithms, where little or no
problem particular information is used in the design of the algorithm. Beyond all
doubt the most important contribution to biology was made by Charles Darwin with
his Theory of Evolution by Natural Selection. As Chiong comments in [22] Observing
the achievements of animals, Darwin writes:

Why, if man can by patience select variations most useful to himself,
should nature fail in selecting variations useful, under changing conditions
of life, to her living products.

If we restrict our attention to the biological part of nature, we can highlight some
of the useful properties. In nature, managing the trade-off between solution quality
and time is basic to survival. A likewise trade-off is made when using a heuristic
to solve the optimization problems. The fittest individuals are those with supreme
problem-solving feature. It is these problem-solving features which have been the
source of inspiration for many nature-inspired tehniques. We will now represent sev-
eral metaheuristic examples of nature-inspired algorithms for optimization problems,
above all those tehniques which is used for tackling the Traveling Salesman Problem.

Simulated Annealing

Simulated Annealing (SA) was introduced by Kirkpatric et.al. in [83]. The SA
optimization method builds on a similarity derived from physics processes where a
low energy state of a solid is inquired by an annealing procedure. The similarity with
combinatorial optimization occur when the optimal solution to a given combinatorial
optimization problem corresponds with the lowest energy of the solid. Therefore, a
solution to a problem is somehow perturbed and a neighbor solution is accepted with
probability according to a Boltzmann distribution e

−∆E
k∗T . Here ∆E correspond to the

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 22

difference in quality between the current solution and the perturbed one. Furthe-
more, k is a scaling parameter and T correspond to the temperature of the process.
The higher the temperature the greater is the probability of acquiring a perturbed
solution. When the temperature is low, improving moves will be privileged. By re-
ducing T using an "annealing schedule" it is possible to simulate the freezing process.
The pseudocode of the SA is shown in Algorithm 5:

Algorithm 5 Simulated Annealing
1: procedure SimulatedAnnealing

2: t = T (0), n = 1
3: best solution sbest = S
4: while (Termination Criterion Unfulfilled) do
5: Generate s′ ∈ N(s)
6: /* we obtain a neighbor of s using the move operator N() */
7: ∆f = f(s)− f(s′)
8: /* we compute the difference in fitness */
9: if ((∆f ≤ 0) or (e

−∆E
k∗T > random [0, 1])) then

10: s = s′

11: /* we accept the perturbed move if it is better than the current */
12: /* or if the Boltzmann criterion is satisfied */
13: end if
14: if (f(s) > f(sbest)) then
15: sbest = s
16: end if
17: t = T (n)
18: /* we apply the annealing schedule for time n */
19: n = n+ 1
20: end while
21: Return sbest
22: end procedure

The key to the efficiency of SA in solving a specific combinatorial optimization
problem stands in the definition of the the annealing schedule and move operator.
Since the first appearance of SA, the Traveling Salesman Problem has served as a
test problem, considered in the original paper of Kirpatrick [83]. For these particular
approach the SA neighbourhood was 2-opt local searcher. In addition, Boese’s PhD
dissertation [13] comprehensively analyzes the optimal annealing schemes for the
TSP.

Ant Colony Optimization

A recent and increasingly popular metaheuristic approach inspired by nature
is the Ant Colony Optimization (ACO) or Ant Algorithms introduced in 1997 by
Dorigo. ACO [38] presents a population based approach that was inspired by the
behavior of real ants in nature. The main idea of this approach trace the estimation

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 23

that ants in nature appear very effective in finding the shortest paths to a food source.
The ants are capable to find the shortest paths through communication transmitted
by leaving pheromone trails while exploring for food. For the Traveling Salesman
Problem, ACO represents a constructive approach which is frequently updated until
some stopping condition is reached. Starting with n ants, each located at a different
city, the ants consecutively move along the edges to create feasible tours. Determi-
nation on which city to visit next are made in a probabalistic manner based on the
pheromone trail left at earlier investigation. After each iteration the pheromone trail
is updated depositing a higher amount of pheromone at edges used in the shortest
tours.

Several improvements to this basic approach have been proposed in the litera-
ture, especially the conjunction with local search to speed up the search process [125].
The computational results described in the literature range from very poor to mod-
erate quality in [39] to solutions of very good quality presented in [125]. For more
knowledge on ACO for the TSP and also to some other combinatorial optimization
problems we refer to [39, 125].

Evolutionary Algorithms

Evolutionary Algorithms (EA) simulate the process of biological evolution in
nature. These are search methods which are motivated by natural selection and
survival of the fittest from biological world. EA performs a search using a popu-
lation of solutions. Each iteration i.e. generation of an EA includes a competitive
selection among all solutions in the population. This selection results in survival of
the fittest and erasure of the poor solutions from the population. Recombination is
performed by exchanging parts of a solution with another one. This proces forms
the new solution that may be better than the previous ones. Furthermore, a so-
lution can be mutated by manipulating a part of it. The evolutionary operators,
recombination and mutation, are used to evolve the population towards areas of the
space in which good solutions exist. Four major evolutionary algorithm classes have
been introduced during the last 50 years: genetic programming is a computational
method, which was proposed Koza [84], Evolutionary Strategies (ES) developed by
Rechenberg [115], Evolutionary Programming (EP) introduced by Fogel [48], and
Genetic Algorithms (GA), proposed by Holland [69]. The general template of an EA
is shown in Algorithm 6. All mentioned variants of evolutionary algorithm (GA, EP,
and ES) are special cases of this scheme.

For the Traveling Salesman Problem the evolutionary algorithms may be shortly
outlined as follows. Starting from a population of k individuals i.e. tours, select
k′ different individuals for mutation and parents for mating. Perform mutations
on the selected individuals and the mating recombination. In recombination the
information of two parent individuals are combined in order to create an offspring
individual. Then select k existing individuals of the new population succeeding the
selection strategy. This procedure is consecutively applied for some iterations i.e.
generations until some termination criteria is met. For further reading on Evolution-
ary Algorithms we refer to [7, 104,123].

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 24

Algorithm 6 Evolutionary Algorithms
1: procedure EA

2: t := 0
3: initialize population (P (0))
4: evaluate (P (0))
5: repeat
6: P ′ := select for variation (P (t))
7: recombine (P ′)
8: mutate (P ′)
9: evaluate (P ′)

10: P (t+ 1) := select for survival (P (t), P ′)
11: t := t+ 1
12: until terminate = true
13: end procedure

Genetic Algorithms

Genetic Algorithms were introduced by Holland in the 1970s [69], and well re-
searched by many authors due present date [42,49,50,101,107,114,122,126,130,131,
135,136]. These techniques are adaptive search methods based on the instrument of
natural selection and the survival of the fittest concept. A comprehensive introduc-
tion to Genetic Algorithms is given in Goldberg’s book [56]. The main inspiration
behind GA is to start with randomly created initial solutions and implement the
survival of the fittest strategy to develop the better solutions through iterations i.e.
generations. A Genetic Algorithm process includes initial population generation,
fitness evaluation, chromosome selection and applying the genetic operators for re-
production, recombination and mutation. The pseudocode of a GA can be seen in
Algorithm 7.

Algorithm 7 Genetic Algorithm
1: procedure GA

2: Randomly generate an initial population P (t)
3: while (Termination Criterion Unfulfilled) do
4: Compute the fitness f(p) ∀p ∈ P (t)
5: According to f(p) choose a subset of P (T), store them in M(t)
6: Recombine and mutate individuals in M(t), store results in M ′(t)
7: Generate P (t+ 1) by selecting some individuals from P (t) and M ′(t)
8: t = t+ 1
9: end while

10: Return best p ∈ P (t− 1)
11: end procedure

In designing a Genetic Algorithm, how to encode a search solution is a basic
and key issue [21]. Many optimization operators for Traveling Salesman Problem
were proposed by Goldberg [56]. A usually used encoding strategy is transposition

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 25

expression [116]. In the transposition expression encoding strategy, each city of the
TSP is encoded as a gene of the chromosome. This encoding include the constraint
that each city appears once and only once in the chromosome. Transposition expres-
sion is the most nature expression for TSP which based on the order of tour, on the
other hand such a procedure may leads to infeasible tour after traditional crossover
operator. This is a usual occurrence for TSP. Even if feasibility can be maintained
in many ways by some repair algorithms, such algorithms can spend a substantial
amount of time and can inhibit convergence [116].

To overcome a possible creation of infeasible tours another encoding method was
introduced. It is the Random Keys encoding [9] which is introduced by Bean. In ran-
dom keys encoding a random numbers encode the construction of the solution. Such
representation guarantees that feasible tours are preserved during the application of
genetic operators. In the GA, the crossover and mutation are two of most important
factors for the success of the algorithm. Crossover is a recombining operator that
takes two individuals, and cuts their chromosome strings at a number of chosen po-
sitions. The sub-segments produced by that cuts are then mixed and reconnected to
produce a whole chromosome with features of the two parents. Therefore, the basic
role of recombination is of information exchange between successful solutions.

Numbers of different recombination operators have been proposed in the litera-
ture to solve the TSP using a GA. The partially mapped crossover [56], linear order
crossover [33] and order based crossover [9, 56] are the usually used recombination
tehniques in the TSP context. Except the usually used recombination strategy, many
different recombination operators are proposed for the TSP, for example: sub-tour
crossover [133], edge map crossover [49], distance preserving crossover [101], generic
crossover [102], NGA [75], EAX [105], GSX [106], heuristic based crossover [92].

The other genetic operator usually used is mutation. It is used to produce the
variation of genomes. Mutation is applied stochastically to a child after recombina-
tion. It alters one or more genes with a small probability allowing a small amount
of random search. As a result of that no point in the whole search space has a
zero probability of being visited by the genetic algorithm. Therefore, a mutation
operator is used to enhance the diversity and provide a chance to escape from local
optima. Many mutation operators were proposed such as inverse, insert, displace,
swap, hybrid mutation [80], and heuristic mutation. The first five listed here are
realized by small modification of genes. Heuristic mutation was proposed by Cheng
and Gen [20], this operator adopts a neighborhood strategy to improve the solution.

Overall the Genetic Algorithms have shown themselves to be useful and efficient
when the search space is large, complex or poorly understood. A lot of progress was
made recently. In 2006, Carter and Ragsdale propose a new GA chromosome and
to them related operators for the Multiple TSP [19]. In 2007, Nguyen described a
hybrid GA based on a parallel implementation of a multi population steady-state
GA involving local search heuristics [107].

Edge Map Crossover

Edge Map Crossover (EMC) [49] is an implementation of the recombination op-

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 26

erator for Genetic Algorithms. It makes use of a so called edge map. Edge map is a
table in which each location is placed. For each location there is a list in which the
neighbouring locations are listed with this location. Recombination is then estab-
lished as follows. Choose the first location of one of both parents to be the current
location. Second step is to remove the current location from the edge map lists. If
the current location still has remaining edges, go to the previous step, otherwise go
to the next step. Choose the new current location from the edge map lists of the
current location as the one with the shortest edge map list. If there are remaining
locations, choose the one with the shortest edge map list to be the current location
and return to second step.

Example:

Parents: 1-2-3-4-5-6; 2-4-3-1-5-6

Edge map: 1) 2 6 3 5; 2) 1 3 4 6; 3) 2 4 1;

4) 3 5 2; 5) 4 6 1; 6) 1 5 2 6

1. Random choice: 2,

2. Next candidates: 1 3 4 6, choose from 3 4 6 same#edges, choose 3,

3. Next candidates: 1 4 (edge list 4 < edge list 1), choose 4,

4. Next candidate: 5, choose 5,

5. Next candidate: 1 6 (tie breaking) choose 1,

6. Next candidate; 6, choose 6.

Offspring: 2-3-4-5-1-6

Distance Preserving Crossover

Distance Preserving Crossover (DPC) is another implementation of the recom-
bination operator for Genetic Algorithms. It attempts to create a new tour with the
same distance to both parents [68]. In order to establish this, the content of the
first parent is copied to the offspring and all edges that do not occur in the second
parent are removed. The resulting fragments are reconnected without making use of
non-overlapping edges of the parents. If edge (i, j) has been destroyed, the nearest
available neighbor k of i from the remaining fragments, is selected and the edge (i, k)
is added to the tour.

Example: Parents: 5-3-9-1-2-8-0-6-7-4; 1-2-5-3-9-4-8-6-0-7

Fragments: 5-3-9|1-2|8|0-6|7|4

Offspring: 6-0-5-3-9-8-7-2-1-4

We procede to next subsection which will in more details describe the hybrid
gentic algorithms.

Hybrid Genetic Algorithms - Memetic Algorithms

Hybrid Genetic Algorithms are evolutionary algorithms that include a stage of
individual optimization or learning as part of their search strategy. Some, but not

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 27

all, of the references can be traced to [46, 66, 129].The most basic Hybrid Genetic
Algorithm can be seen below in Algorithm 8 :

Algorithm 8 Hybrid Genetic Algorithm
1: procedure HybridGA

2: Randomly generate an initial population P (t)
3: while (Termination Criterion Unfulfilled) do
4: Compute the fitness f(p) ∀p ∈ P (t)
5: According to f(p) choose a subset of P (T), store them in M(t)
6: Recombine and mutate individuals in M(t), store results in M ′(t)
7: Improve by local search (M ′(t))
8: Generate P (t+ 1) by selecting some individuals from P (t) and M ′(t)
9: t = t+ 1

10: end while
11: Return best p ∈ P (t− 1)
12: end procedure

In the pseudocode of the hybrid genetic algorithm the difference feature from
a standard GA is the use of local search. It is used to improve the newly created
individuals. The reader should note that this is just one possible way to hybridize
a GA with local search. Even though it seems from the Algorithm 8, to be a naive
minor change, is in fact a crucial deviation from a canonical GA. Hybrid genetic
algorithms are inspired by model of adjustment in natural systems that combine
evolutionary adjustment of populations of individuals with individual learning.

In the literature, Hybrid Genetic Algorithms have also been named Memetic
Algorithms (MA) [60,85–87,102,110], Genetic Local Searchers (GLS) [100], Lamar-
ckian Genetic Algorithms [103], Baldwinian Genetic Algorithms [88]. The Memetic
Algorithms differ from other hybrid evolutionary techniques in that all individuals
in the population are local optimum, since after each mutation or recombination,
a local search is applied. The name genetic local search (GLS) was firstly used by
Ulder in [127] to describe an evolutionary algorithm with recombination and then
applied local search. In [17], Bui suggest a GLS algorithm with Lin-Kernighan
heuristic as the neighbourhood procedure. They developed a k-point recombination
operator with an additional repair mechanism for producing the feasible offspring.
In [79] Katayama suggest an evolutionary algorithm with Lin-Kernighan algorithm
and small populations, (he used just two individuals) and a heuristic recombination
scheme. This approach is likewise to the iterated Lin-Kernighan heuristic but in-
creased diversification is achieved by the crossover of the current solution and the
best solution found.

In Chapter 3 we will systematically study approaches to Hybrid Genetic Algo-
rithm. Furthermore, we are going to investigate some of the constructive and local
search approaches we have described in this chapter and to compare their perfor-
mance to our grafted genetic heuristic approache for symmetric Traveling Salesman
Problem.

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 28

2.2.5 Finding exact solutions for the TSP

Finding the exact solution to a Traveling Salesman Problem with n cities involves
to check (n−1)! of possible tours. Evaluation of all possible tours is infeasible for even
small instances of TSP. For finding the optimal tour Held and Karp [67] introduced
the following dynamic programming formulation: Given a subset of city pointers,
discarding the first city, S ⊂ {2, 3, ..., n} and l ∈ S, let d∗(S, l) stand for the length
of the shortest path from city 1 to city l, visiting all cities in S in between. For
S = {l} , d∗(S, l) is defined as d1l. Then the shortest path for larger sets with |S| > 1
is:

d∗(S, l) = min
m∈S\{l}

(d∗(S\ {l} ,m) + dml). (2.9)

In conclusion, the minimal tour length for a complete tour which includes return-
ing to city 1 is:

d∗∗ = min
l∈{2,3,...,n}

(d∗({2, 3, ..., n} , l) + dl1). (2.10)

Using the Equation 2.9 and the Equation 2.10, the quantities d∗(S, l) can be
calculated recursively and the minimal tour length d∗∗ can be obtained. In a next
step, the optimal permutation π = {1, i2, i3, ..., in} of city pointers 1 through n can
be calculated oppositely, starting with in and working consecutively back to i2. The
step take advantage of the fact that a permutation π can be optimal only if

d∗∗ = d∗({2, 3, ..., n} , in) + din1 (2.11)

and, for 2 ≤ p ≤ n− 1,

d∗({i2, i3, ..., ip, ip+1} , ip+1) = d∗({i2, i3, ..., ip} , ip) + dipip+1
(2.12)

The complexity of space for storing the values for all d∗(S, l) is (n−1)2n−2 which
strictly restricts the dynamic programming algorithm to TSP of small sizes. In spite
of that for very small TSP instances this approach is fast and efficient [64].

A quite different method can deal with larger instances by using a relaxation of
the LP problem. This procedure iteratively tightens the relaxation till a solution is
found. This method for solving LP problems is called cutting plane method and was
introduced by Dantzig, Fulkerson, and Johnson in 1954 [30].

Each iteration of a method begins with using the relaxation Ax ≤ b, where the
polyhedron P determined by the relaxation contains S and is bounded. In addition
the optimal solution x∗ of the relaxed problem can be reached using standard LP
solvers. If the x∗ found belongs to S, the optimal solution of the original problem
is obtained. If not then a linear inequality can be found which is content by all
points in S but violated by x∗. This inequality is called a cutting plane or cut. If no
additional cutting planes can be found or the improvement becomes very small, the
problem is branched into two subproblems. These sub-problems can be minimized
individually. Branching is done iteratively that leads to a binary tree of subproblems.
Then each of a subproblem is solved without further branching or is found to be

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 29

irrelevant. Irrelevant means that relaxed version previously produces a longer path
than a solution of another subproblem. This method is called branch and cut and
was introduced by Padberg and Rinaldi, in 1990 [113]. The branch and cut method
is a variation of the branch and bound procedure presented by Land and Doig, in
1960 [89].

The initial polyhedron P used by Dantzig [30] contains all vectors x such that for
all e ∈ E is 0 ≤ xe ≤ 1. Furthermore, in the resulting tour each city is connected to
exactly two other cities. Different methods for finding cuts to prevent sub-tours (sub-
tour elimination inequalities) and to ensure an integer solution Gomory cuts, were
developed over time [64]. At present the most effective implementation of this method
is Concorde described in [4]. Concorde is a computer code for the symmetric traveling
salesman problem. The code is written in the AnsiC programming language. At the
time of writing this dissertation the Concorde’s TSP solver has been used to obtain
the optimal solutions to 106 of the 110 instances from TSPLIB [119]. In Chapter 3
the Concorde’s TSP solver was used for computing the lower bound for the quality
of solutions for tested algorithms. Furthermore, in Chapter 4 it was used as a solver
for the Traveling Salesman Problem.

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 30

Chapter 3

Grafted Genetic Algorithm for

Traveling Salesman Problem

Results of this chapter are published in the following articles:

• M. Djordjevic, Influence of Grafting a Hybrid Searcher Into the Evolutionary
Algorithm, Proceedings of the Seventeenth International Electrotechnical and
Computer Science Conference., Portoroz, (2008), 115–118.

• M. Djordjevic, and M. Tuba, and B. Djordjevic, Impact of Grafting a 2-opt
Algorithm Based Local Searcher Into the Genetic Algorithm, Proceedings of
the 9th WSEAS international conference on Applied informatics and commu-
nications, AIC 2009., Moscow, (2009), 485–490.

• M. Djordjevic, and A. Brodnik, Quantitative Analysis of Separate and Com-
bined Performance of Local Searcher and Genetic Algorithm, Book of Abstracts
of International Conference on Operations Research, OR 2011., Zurich, (2011),
130.

• M. Djordjevic, and A. Brodnik, Quantitative Analysis of Separate and Com-
bined Performance of Local Searcher and Genetic Algorithm, Proceedings of
the 33rd International Conference on Information Technology Interfaces, ITI
2011., Dubrovnik, (2011), 515–520.

3.1 Introduction

Genetic Algorithms (GA), which was in detail described in Section 2.2.4 use some
mechanisms inspired by biological evolution [69]. They are applied on a finite set
of individuals called population. Each individual in a population represents one of
the feasible solutions of the search space. Mapping between genetic codes and the
search space is called encoding and can be binary or over some alphabet of higher
cardinality. Good choice of encoding is a basic condition for successful application
of a genetic algorithm. Each individual in the population is assigned a value called
fitness. Fitness represents a relative indicator of quality of an individual compared to
other individuals in the population. Selection operator chooses individuals from the

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 32

current population and takes the ones that are transferred to the next generation.
Thereby, individuals with better fitness are more likely to survive in the population‘s
next generation. The recombination operator combines parts of genetic code of the
individuals (parents) into codes of new individuals (offsprings). Such a mixing of
genetic material enables that well-fitted individuals or their relatively good genes
give even better offspring. By a successive application of selection and crossover, the
diversity of genetic material can be decreased which leads to a premature convergence
in a local optimum which may be far from a global one. The components of the
genetic algorithm software system are: Genotype, Fitness function, Recombinator,
Selector, Mutator, Mater, Replacer and Terminator. In this chapter we study a well
defined problem of a Traveling Salesman (TSP), details about this problem can be
found in Section 2.1. In the TSP a set {C1, C2, ...CN} of cities is considered and for
each pair {Ci, Cj} of distinct cities a distance d(Ci, Cj) is given. The goal is to find
an ordering π of the cities that minimizes the quantity

N−1
∑

i=1

d(Cπ(i), Cπ(i+1)) + d(Cπ(N), Cπ(1)). (3.1)

This quantity is referred to as the tour length since it is the length of the tour
a salesman would make when visiting the cities in the order specified by the per-
mutation, returning at the end to the initial city. We will concentrate in this pa-
per on the symmetric TSP in which the distances satisfy d(Ci, Cj) = d(Cj , Ci) for
1 ≤ i, j ≤ N and more specificaly to the Euclidean distance. The TSP is known to
be NP-hard [52], even under substantial restrictions, such is the case with Euclidean
distance, there are many excellent algorithms which perform well even on very large
cases [52].

The 2-opt is a simple local search algorithm for the TSP, it is in details described
in Section 2.2.3. The main idea behind it is to take a route that crosses itself and
reorder it so that it does not cross itself any more. The 2-opt local search will be
used to hybridize GA metaheuristic to solve TSP. Although the 2-opt algorithm [44]
performs well and can be applied to Traveling Salesman Problems with many cities,
it finds only a local minimum. The basic step of 2-opt is delete two edges from a
tour and reconnect the remaining fragments of the tour by adding two new edges.
Once we choose the two edges to delete, we do not have a choice about which edges
to add there is only one way to add new edges that results in a valid tour. The
2-opt algorithm repeatedly looks for 2-opt moves that decrease the cost of the tour.
A 2-opt move decreases the cost of a tour when the sum of the lengths of the two
deleted edges is greater than the sum of the lengths of the two new replaced edges.
A 2-opt move is the same as inverting a subsequence of cities in the tour. The
nearest neighbour algorithm, details can be found in Section 2.2.2, is one of the most
intuitive heuristic algorithms for the TSP. It’s a greedy method for solving the TSP.
The genetic algorithm considered in this paper are hybrid evolutionary algorithms,
details are in Section 2.2.4, incorporating local search which have been referred to
as Memetic Algorithms (MA) [102].

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 33

3.2 Grafted GA for the TSP

Grafting in botany is when the tissues of one plant are affixed to the tissues of an-
other. To speed maturity of hybrids in fruit tree breeding programs, hybrid seedlings
may take ten or more years to flower and fruit on their own roots. Grafting can re-
duce the time to flowering and shorten the breeding program. Local Searcher is an
extension of the conventional genetic algorithm as it does not need to make use of
genetic components. For more details on local search see Section 2.2.3. It facilitates
the optimization of individual genomes outside the evolution process. There are
many implementations of local searchers [49], some even in hardware [70].

In our algorithm, the pseudocode can be seen in Algorithm 9, after the recom-
bination has been applied (line 8 in the pseudocode), a Local Searcher is used to
optimize every single offspring genome (line 9 in the pseudocode). Because of the
usage of such external optimizer the genetic algorithm is no longer pure and therefore
we speak of a grafted genetic algorithm [34], [37], [35], [36]. This form of optimiza-
tion is of a local kind. It alters the genome by heuristically changing the solution.
When approximating a TSP instance, a 2-opt local optimization technique is applied
to make modifications to a genome so as to create better genomes at a higher rate.
These are much desired because the evolution process can be quite slow with respect
to the desired results. Furthermore it has always been the case in optimization that
incorporating problem specific knowledge (not only through local optimizations, but
also in defining the evolutionary operators) is required to gain better results. A
genome represents a potential solution to a problem. How the solution information
is coded within a genome is determined by the genotype.

Edge map crossover (EMC) [49] is an implementation of the recombination oper-
ator (line 8 in the Algorithm 9). It makes use of a so called edge map. The edge map
crossover is in more details presented in Section 2.2.4. Edge map is a table in which
each location is placed. For each location there is a list in which the neighbouring
locations are listed with this location.

Distance preserving crossover [68] is another implementation of the recombination
operator (line 8 in the Algorithm 9). It attempts to create a new tour with the
same distance to both parents. The distance preserving crossover is in more details
described in Section 2.2.4. Tournament Selector places groups of genomes from the
population together, creating the groups from top to bottom with respect to the
enumerative ordering of the genomes in the population and selects the best of the
genomes within this group. This is repeated until the required amount of genomes
is selected. The Random Mater is a simple way of mating parents. It mates the
parents as enumerated in the population at random using the mating size to create
groups until no more groups can be created. The new offspring only replacer is
the implementation of the classical replacement strategy that simply only allows the
offspring to survive. Thus the genomes from the next generation replace the entire
current population. The equality terminator for all equal genomes implements the
termination condition specifying that the genetic algorithm should terminate when
all genomes in the population are identical-all equal genomes.

The local searcher is an extension to the conventional genetic algorithm as it
needs not make use of genetic operators. It facilitates the optimization of individual

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 34

genomes outside the evolution process. After the recombination has been applied, a
Local Searcher is used to optimize every single offspring genome. The Local Searcher
has no further knowledge on the execution of the genetic algorithm in the larger
setting. The system will provide it with the genome it needs to locally optimize
when needed.

Algorithm 9 Grafted Genetic Algorithm
1: procedure GGA

2: t = 0
3: initialize (P (t))
4: evaluate (P (t))
5: while not terminate (P (t)) do
6: sel = select (P (t))
7: mat = mate (sel)
8: rec = ∀ mated collection m ∈ mat do recombination(r)
9: loc = ∀ genomes g in each recombined collection r ∈ rec do local search

10: rep = replace(loc, P (t))
11: P (t+ 1) = select(rep)
12: evaluate (P (t+ 1))
13: t = t+ 1
14: end while
15: end procedure

The 2-opt local searcher is a local optimizer for the TSP that has been grafted
into the standard genetic algorithm (line 9 in the Algorithm 9). This local optimizer
performs the 2-opt heuristic that exchanges edges to reduce the length of a tour. An
exchange step consists of removing two edges from the current tour and reconnecting
the resulting two paths in the best possible way Fig. 3.1.

The following experiments demonstrate a new kind of testing on hybrid genetic
algorithms. In the extension of an experiment an influence of partial grafting a 2-opt
local searcher into genetic algorithm was tested. In the conducted experiments we
will present an influence of grafting GA with local search and we will perform a
performance analysis of partial use of local optimization operator on GA for TSP.
Furthermore, we will answer the questions of how often to graft a GA and when.

Figure 3.1: Exchange step of 2-opt algorithm

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 35

3.3 Experiment

For testing our strategy and comparing it to other solutions we used the instances
of symmetric traveling salesman problem which can be found on TSPLIB [119]. We
deliberately used relatively small instances for which best solutions are known since
the goal of this research is not to find a better algorithm for the symmetric TSP,
but rather to compare on a controlled environment the impact of grafting a genetic
algorithm. Altogether 20 instances have been tried out, with different complexity
and range from 14 to 150 cities per instance.

We compared our method (grafted genetic algorithm (GGA)), separately in one
case with edge map crossover (GGAemc) and in another case with a distance pre-
serving crossover (GGAdpc) with four other methods. As the upper bound for the
quality of solution we used the above mentioned Greedy Heuristic. For the lower
bound for the quality of solution we used exact solutions, global minima, obtained
by Concorde [4]. The concorde algorithm is described in more details in Section 2.2.5.
Then we compared our grafted method with a pure 2-opt algorithm and pure genetic
algorithm. For greedy heuristic and the pure 2-opt heuristic the running time is in
a range from 0.5 to 1.5 seconds.

In experiment extension a local searcher is periodically implemented with 10, 20,
30, 40, 50, 60, 70, 80 and 90% frequency. In all cases three different independent
distributions of generations with local searcher were used: random, beginning se-
quence and ending sequence. Random variations means that use of local searcher is
with adequate probability distributed in iterations of the algorithm. Begin sequence
means that a sequence of iterations with local searcher is used in the first genera-
tions of an algorithm. While in the ending it is used on the last generations of the
algorithm. The total number of iterations are limited to the number of iterations
reached in grafted genetic algorithm with edge map recombination (GGAemc). The
extension of an experiment include testing on a 10 largest instances from the Table
3.1 plus instance pr439. The results presents average values of 5 runs for each tested
method.

All experiments were conducted on a computer with Pentium(R) 2.8 GHz CPU,
with Windows 7. Furthemore, a development environment the EA Visualizer [15],
an application written in Java programming language, was used. The Concorde’s
code is written in the AnsiC programming language. Therefore, in this research
absolute times were not of crucial importance, we were only interested in relative
performance of tested algorithms.

3.4 Results

The results of an experiment are summarized in Table 3.1. Twenty cases from
TSPLIB were used for testing. The names of these cases are in the first column
and the name always contains the size of the problem, i.e. the number of cities
(which are between 14 and 150). The last two columns are exact solutions (global
minima) obtained by Concorde, together with execution times.

A well known problem with moderate sized examples and tools to get optimal
solutions were selected, recall that a goal of this research is not to improve solutions

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 36

Table 3.1: Five techniques for solving Euclidean TSP
Name Greedy 2-opt

quality quality quality gen. time quality gen. time qual. gen. time qual. gen. time opt time

burma14 8.32% 5.71% 0% 74 3.4 0% 81 3.5 0% 7 0.6 0% 6 0.5 3323 0.1

ulysses16 10.42% 7.15% 0% 136 4.1 0% 125 4.4 0% 9 0.7 0% 9 0.7 6859 0.2

ulysses22 12.54% 7.87% 0% 1267 14.7 0% 1328 16.4 0% 8 0.6 0% 8 0.7 7013 0.2

bayg29 13.37% 6.38% 0% 1345 19.4 0% 1137 17.6 0% 13 1.3 0% 14 1.4 1610 0.3

bays29 12.87% 5.37% 0% 2185 29.2 0% 2643 34.1 0% 12 1.2 0% 12 1.2 2020 0.3

dantzig42 14.06% 7.11% 0% 4704 79.8 0% 4232 74.6 0% 10 1.3 0% 9 1.3 699 0.5

att48 13.98% 8.47% 0% 4807 85.2 0% 5213 91.3 0% 22 2.2 0% 23 2.3 33522 0.6

eil51 15.24% 7.67% 4.21% 5482 100.0+ 5.23% 5489 100.0+ 0% 33 3.9 0% 30 3.8 426 0.3

berlin52 14.82% 7.45% 0% 2037 33.7 4.92% 5021 100.0+ 0% 15 1.7 0% 15 1.7 7542 0.4

st70 13.17% 7.84% 5.12% 5259 100.0+ 5.72% 5198 100.0+ 0% 20 4.1 0% 19 4.1 675 0.5

eil76 14.47% 8.15% 6.56% 5347 100.0+ 7.24% 5298 100.0+ 0% 53 4.5 0.19% 49 4.4 538 1.3

pr76 13.96% 9.95% 4.18% 5218 100.0+ 5.36% 5191 100.0+ 0% 42 4.1 0% 43 4.2 108159 1.2

gr96 16.32% 7.14% 4.98% 5191 100.0+ 5.71% 5090 100.0+ 0% 73 8.4 0.13% 73 8.4 55209 1.6

rat99 14.79% 7.41% 5.31% 5114 100.0+ 7.12% 5011 100.0+ 0% 74 11.9 0.17% 70 11.7 1211 1.7

kroA100 12.37% 8.07% 5.12% 5072 100.0+ 6.58% 4971 100.0+ 0% 24 3.6 0.18% 22 3.5 21282 1.7

kroB100 16.58% 7.19% 6.14% 5041 100.0+ 5.92% 4816 100.0+ 0% 39 5.8 0.21% 36 5.7 22141 1.7

kroC100 10.47% 11.19% 4.87% 5121 100.0+ 6.78% 4923 100.0+ 0.10% 34 5.3 0.19% 28 5.1 20749 1.8

kroD100 14.81% 7.74% 5.07% 4976 100.0+ 8.12% 4951 100.0+ 0% 31 5.6 0.29% 25 5.3 21294 1.5

lin105 16.60% 9.85% 6.72% 4756 100.0+ 6.51% 4803 100.0+ 0.01% 26 4.6 0.17% 25 4.6 14379 1.3

ch150 19.62% 11.72% 7.22% 4512 100.0+ 8.77% 4460 100.0+ 0.22% 88 15.2 0.32% 86 15.1 6528 7

GAemc GAdpc GGAemc GGAdpc Concorde

for difficult problems but to compare and quantitatively examine the effects of graft-
ing local searches (in this case 2-opt based) to standard genetic algorithm. Such
knowledge can be used to fine tune and calibrate a hybrid system which can then
be used on large cases. These last two columns are used as a reference for all other
tests.

The second column in Table 3.1 represents lower bound for the quality of solution.
It is a simple nearest neighbour heuristic. It is fast, but very unsophisticated and any
reasonable algorithm should do better than that. This greedy heuristic gives results
that are about 15 % (except for some very small cases) worse than the optimal
solution. The column titled quality shows by how many percent is the solution
produced by this algorithm worse than the optimal solution. 0 % in this column
means algorithm found the best solution. The running times of the algorithm are
from 0.2 to 2.3 in seconds. The third column in the Table 3.1 corresponds to the pure
2-opt algorithm. As expected, it also gives quick but far from optimal solutions. It
quickly finds a local minimum, but it is unable to broaden the search to find another
local minimum. However, 2-opt algorithm is superior to greedy algorithm, the quality
of the solution, with the similar running times from 0.2 to 2.5 seconds, is on average
about 8 % worse than optimal.

The fourth column in the Table 3.1 corresponds to the pure Genetic Algorithm.
The running time, as expected, is significantly increased. While our GGA algorithm
reached optimal solution below one second or few seconds (0.6 to 15.2 seconds), the
running time for pure genetic algorithm was from 3.4 seconds to 100 seconds which
was time-limit. In 12 out of 20 cases no optimal solution was found within that time
limit, but in 8 cases an optimal solution was found and the middle column indicates

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 37

in which generation that happened. For 12 cases where optimal solution was not
found, the quality of found solution is expressed as for previous cases in percents
above the optimal solution.

The sixth column in Table 3.1 describes results obtained by our grafted algorithm,
which is programmed with edge map crossover as recombination operator (GGAemc).
In 17 out of 20 considered cases an optimal solution was found. Remaining three
instances differ from optimal solution in 0.01, 0.10 and 0.22 percent. The solutions
were found in relatively few generations and very fast. Execution times were 0.6 to
15.2 seconds.

The seventh column in Table 3.1 corresponds to our grafted genetic algorithm
which contains a distance preserving crossover as recombination operator (GGAdpc).
In 11 out of 20 considered cases an optimal solution was found. In remained 9 cases,
delivered solutions differ from optimal in range from 0.13 to 0.32 percent. The
running time and number of generations of GGAdpc, in comparison with GGAemc,
are slightly lesser, particularly in the lowermost part of the table which represents
more complex instances.

Quantitative results on test cases from TSPLIB show that grafted algorithms,
GGAemc and GGAdpc, have advantages. Even when their’s components have serious
drawbacks, their grafted combinations exhibits a very good behaviour. Results on
examples from TSPLIB show that this grafted method combines good qualities from
both methods applied and significantly outperforms each individual method.

The results of experiment extension are summarized in Table 3.2 and in Figures
3.2, 3.3 and 3.4. The first column in Table 3.2 corresponds to the names of instances
and the size of the problem (which are between 76 and 439) which are duplicated for
better visualization of the table. The second column in the Table 3.2 presents the
result of the pure Genetic Algorithm and Grafted Genetic Algorithm, both with edge
map crossover as recombination operator (GAemc and GGAemc). This algorithms
contain 0% and 100% frequency of local search, respectively. The q in Table 3.2
stands for quality differ from optimal solution. The t stands for running time.

The third column in Table 3.2 represents results for 10% and 90% frequency. The
subcolumn titles rnd, begin, end stands for three variations of partial hybridization,
random, begin sequence and end sequence, respectively. The result for 10% frequency
shows that this kind of algorithm settings is fast (the time vary from 0.9 seconds to
11.0 seconds), but the quality of solution (which vary from 0.34% to 4.92%), are
weak.

The best performance of all tested cases was achieved in the configuration with
90% frequency, especially in variation with end sequence, with results coloured in
red. In 9 out of 11 tested instances the results was the same as for GGAemc. For
instance (kroB100) result was better in 0.01%, and for instance pr439 a result is worse
in 0.04%. Furthermore, the solutions provided by, 90% end sequnce variations, were
found faster then by GGAemc. The running time vary from 3.3 to 78.9 seconds,
compared to the time achieved by GGAemc, which vary from 3.6 to 91.8 seconds.
This mean, that the same quality of result was achieved in shorter time.

The results for instance pr439 can be seen in Figure 3.2. In 95% of all tested
cases, (look in columns from 3 to 7 in Table 3.2) the best performance was achieved in
variation with end sequence. Additionally, the results of end sequence for all instances

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 38

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

random

begin

end

Figure 3.2: Results for pr439

0

10

20

30

40

50

60

70

80

90

100

pr439

ch150

lin105

kroD100

kroC100

kroB100

kroA100

rat99

gr96

pr76

eil76

Figure 3.3: Running times

can be seen in Figure 3.4. In all three variations of hybridization (random, begin and
end) the running time is the same for particular frequency. For all tested instances
the running time grows almost linerly with regard to percent of hybridization, see
Figure 3.3.

3.5 Conclusions

The goal of this paper was to investigate influence of grafting a 2-opt based local
searcher into the standard genetic algorithm, for solving the Traveling Salesman
Problem with Euclidean distance. It is known that genetic algorithms are very
successful when implemented for many NP-hard problems. However, they are much
more effective if some specific knowledge about particular problem is utilized. In
our first experiment we compared two direct techniques, with our grafted genetic
algorithms. Solutions from Concorde and greedy algorithm were added for better

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 39

Table 3.2: Partial Grafting of a Genetic Algorithm
N

am
e

rn
d

b
eg

in
en

d
f.

a
rn

d
b

eg
in

en
d

f.
a

rn
d

b
eg

in
en

d
f.

a
rn

d
b

eg
in

en
d

f.
a

rn
d

b
eg

in
en

d
f.

a

q
t

q
q

q
t

q
q

q
t

q
q

q
t

q
q

q
t

q
q

q
t

ei
l7
6

8
.9

3
%

0
.8

2
.4

6
%

2
.1

3
%

1
.2

5
%

1
.2

1
.8

0
%

0
.9

9
%

0
.9

6
%

1
.5

1
.6

2
%

0
.9

2
%

0
.7

7
%

1
.8

1
.5

8
%

0
.4

4
%

0
.2

2
%

2
.2

1
.1

4
%

0
.3

7
%

0
.1

8
%

2
.6

p
r7
6

5
.3

9
%

0
.9

0
.6

0
%

0
.4

1
%

0
.3

4
%

1
.3

0
.3

2
%

0
.2

4
%

0
.1

9
%

1
.7

0
.2

5
%

0
.1

7
%

0
.1

0
%

2
.1

0
.2

0
%

0
.1

6
%

0
.0

9
%

2
.4

0
.1

7
%

0
.1

1
%

0
.0

7
%

2
.7

g
r9
6

6
.4

6
%

1
.7

1
.6

8
%

0
.7

8
%

0
.7

0
%

2
.3

1
.3

7
%

0
.5

9
%

0
.5

5
%

2
.9

0
.9

4
%

0
.5

9
%

0
.5

5
%

3
.6

0
.7

8
%

0
.5

9
%

0
.5

5
%

4
.2

0
.8

2
%

0
.5

5
%

0
.4

7
%

4
.9

ra
t9
9

6
.1

4
%

1
.9

2
.5

3
%

1
.8

2
%

1
.6

2
%

2
.6

2
.6

7
%

0
.9

0
%

0
.7

1
%

3
.3

2
.8

1
%

0
.6

2
%

0
.5

6
%

4
.1

2
.1

3
%

0
.5

3
%

0
.3

9
%

5
.2

1
.2

8
%

0
.4

3
%

0
.3

8
%

6
.3

kr
o
A
1
0
0

6
.6

7
%

0
.6

1
.0

9
%

0
.7

3
%

0
.3

8
%

0
.9

0
.8

4
%

0
.3

8
%

0
.3

3
%

1
.2

0
.1

9
%

0
.2

2
%

0
.1

2
%

1
.5

0
.1

8
%

0
.0

8
%

0
.0

3
%

1
.8

0
.1

6
%

0
.0

3
%

0
.0

2
%

2
.1

kr
o
B
1
0
0

7
.0

2
%

0
.8

1
.6

1
%

1
.1

5
%

1
.0

2
%

1
.3

1
.2

6
%

0
.7

0
%

0
.5

3
%

1
.8

0
.7

2
%

0
.7

0
%

0
.4

2
%

2
.3

0
.7

1
%

0
.4

7
%

0
.3

5
%

2
.8

0
.7

6
%

0
.4

0
%

0
.3

8
%

3
.3

kr
o
C
1
0
0

6
.6

1
%

0
.7

2
.2

0
%

1
.0

5
%

0
.9

9
%

1
.2

1
.1

9
%

0
.9

0
%

0
.7

5
%

1
.6

0
.9

7
%

0
.6

3
%

0
.5

2
%

2
.1

0
.7

9
%

0
.4

4
%

0
.3

7
%

2
.5

0
.7

4
%

0
.3

8
%

0
.3

6
%

2
.9

kr
o
D
1
0
0

7
.6

7
%

0
.8

2
.2

0
%

1
.8

7
%

2
.1

1
%

1
.3

2
.3

9
%

2
.0

2
%

1
.4

7
%

1
.8

1
.4

4
%

1
.1

7
%

0
.9

7
%

2
.3

1
.2

6
%

0
.8

9
%

0
.6

7
%

2
.8

0
.9

7
%

0
.5

4
%

0
.4

6
%

3
.3

li
n
1
0
5

8
.5

4
%

0
.5

1
.5

0
%

1
.1

1
%

1
.1

9
%

0
.9

0
.8

9
%

0
.7

0
%

0
.5

0
%

1
.4

0
.8

3
%

0
.4

0
%

0
.4

1
%

1
.8

0
.7

1
%

0
.3

7
%

0
.2

9
%

2
.2

0
.4

6
%

0
.2

3
%

0
.2

3
%

2
.6

ch
1
5
0

8
.6

9
%

5
.4

2
.9

4
%

2
.5

2
%

2
.3

4
%

6
.2

2
.1

7
%

1
.8

9
%

1
.8

3
%

6
.9

1
.7

7
%

1
.5

8
%

1
.3

7
%

7
.8

1
.6

3
%

1
.4

6
%

1
.3

6
%

8
.7

1
.3

1
%

1
.1

9
%

0
.9

2
%

9
.6

*
p
r4
3
9

1
0

.4
5

%
3

.7
4

.9
2

%
4

.3
5

%
3

.4
8

%
1

1
4

.5
9

%
3

.4
3

%
2

.9
6

%
1

8
4

.0
4

%
3

.1
6

%
2

.8
1

%
2

5
3

.3
4

%
2

.9
2

%
2

.5
6

%
3

6
.8

3
.6

2
%

3
.1

3
%

2
.4

5
%

4
5

rn
d

b
eg

in
en

d
f.

a
rn

d
b

eg
in

en
d

f.
a

rn
d

b
eg

in
en

d
f.

a
rn

d
b

eg
in

en
d

f.
a

q
t

q
q

q
t

q
q

q
t

q
q

q
t

q
q

q
t

ei
l7
6

0
.0

4
%

4
.5

0
.1

5
%

0
.0

4
%

0
.0

4
%

4
.1

0
.1

8
%

0
.0

7
%

0
.0

4
%

3
.7

0
.4

4
%

0
.1

5
%

0
.1

1
%

3
.3

1
.0

7
%

0
.2

2
%

0
.1

1
%

2
.9

p
r7
6

0
.0

4
%

4
.1

0
.0

7
%

0
.0

4
%

0
.0

4
%

3
.8

0
.1

2
%

0
.1

0
%

0
.0

5
%

3
.5

0
.1

1
%

0
.1

0
%

0
.0

6
%

3
.2

0
.1

5
%

0
.1

1
%

0
.0

6
%

2
.9

g
r9
6

0
.1

2
%

8
.4

0
.2

3
%

0
.1

6
%

0
.1

2
%

7
.7

0
.2

7
%

0
.2

3
%

0
.2

0
%

7
0

.3
9

%
0

.3
5

%
0

.2
7

%
6

.3
0

.7
4

%
0

.3
5

%
0

.3
1

%
5

.6

ra
t9
9

0
.0

0
%

1
1

.9
0

.0
7

%
0

.0
0

%
0

.0
0

%
1

0
.8

0
.5

6
%

0
.0

5
%

0
.0

2
%

9
.7

0
.6

1
%

0
.1

6
%

0
.0

5
%

8
.5

1
.1

3
%

0
.3

0
%

0
.2

5
%

7
.4

kr
o
A
1
0
0

0
.0

0
%

3
.6

0
.0

0
%

0
.0

0
%

0
.0

0
%

3
.3

0
.0

0
%

0
.0

0
%

0
.0

0
%

3
0

.0
1

%
0

.0
0

%
0

.0
0

%
2

.7
0

.0
5

%
0

.0
0

%
0

.0
0

%
2

.4

kr
o
B
1
0
0

0
.1

0
%

5
.8

0
.2

2
%

0
.1

2
%

0
.0

9
%

5
.3

0
.3

1
%

0
.3

7
%

0
.2

2
%

4
.9

0
.5

2
%

0
.2

0
%

0
.2

4
%

4
.3

0
.8

1
%

0
.3

0
%

0
.2

9
%

3
.7

kr
o
C
1
0
0

0
.2

3
%

5
.3

0
.3

7
%

0
.3

2
%

0
.2

3
%

4
.8

0
.5

7
%

0
.5

6
%

0
.2

2
%

4
.3

0
.5

2
%

0
.3

4
%

0
.2

9
%

3
.7

0
.5

5
%

0
.3

2
%

0
.3

2
%

3
.3

kr
o
D
1
0
0

0
.0

8
%

5
.6

0
.3

2
%

0
.2

8
%

0
.0

8
%

5
.2

0
.5

8
%

0
.3

1
%

0
.2

6
%

4
.7

0
.6

1
%

0
.4

5
%

0
.4

0
%

4
.3

0
.8

8
%

0
.5

3
%

0
.4

5
%

3
.8

li
n
1
0
5

0
.1

0
%

4
.6

0
.1

2
%

0
.0

9
%

0
.1

0
%

4
.2

0
.1

1
%

0
.1

5
%

0
.1

0
%

3
.8

0
.1

3
%

0
.1

2
%

0
.0

9
%

3
.4

0
.2

1
%

0
.1

7
%

0
.1

2
%

3
.0

ch
1
5
0

0
.3

0
%

1
5

.2
0

.8
1

%
0

.3
5

%
0

.3
0

%
1

4
.1

0
.8

6
%

0
.4

2
%

0
.3

7
%

1
3

0
.9

6
%

0
.6

9
%

0
.5

4
%

1
2

1
.1

6
%

0
.9

7
%

0
.8

4
%

1
0

.7

*
p
r4
3
9

1
.3

0
%

9
1

.8
1

.7
2

%
1

.6
6

%
1

.3
4

%
7

8
.9

2
.2

8
%

2
.1

4
%

1
.9

7
%

7
0

2
.7

8
%

2
.1

8
%

2
.0

3
%

6
2

3
.2

6
%

2
.9

1
%

2
.3

1
%

5
2

.4

G
A

em
c

1
0

2
0

G
G

A
em

c

3
0

4
0

5
0

9
0

8
0

7
0

6
0

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 40

pr439

lin105

kroC100

kroA100

gr96

eil76

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

pr439

ch150

lin105

kroD100

kroC100

kroB100

kroA100

rat99

gr96

pr76

eil76

Figure 3.4: Results for end sequence

comparison. Quantitative results on test cases from TSPLIB show that grafted
algorithms have advantages. Even when both components have serious drawbacks,
their grafted combinations exhibits a very good behaviour. Results on examples from
TSPLIB show that this method combines good qualities from both methods applied
and significantly outperforms each individual method.

In the second part of an experiment an influence of partial grafting a 2-opt local
searcher into genetic algorithm was studied. The best performance was achieved in
a configuration with 90% frequency with end sequence. In a comparison with a
performance of GGAemc the same quality of results was achieved in a shorter time,
on average a 7% of running time was spared. The cases with 10% frequency use
of local search provides fast and far from optimal solutions but still better then
the GAemc, with small increase in time. The configurations with 50% frequency
use of local searcher present a good examples of trade-off between a running time
and quality, especcialy in setting with ending sequence of local searcher. From the
results obtained in Table 3.2, we can conclude that the best gain is attained when a
local searcher is used in an ending sequence of the algorithm and in frequency not
less then 50% and not more than 90%. There are several issues for future research,
such as investigating the effects of a different use of the local optimization and other
metaheuristic algorithms, analyzing the individual performance gains provided by
the local search, and to look at how to scale up the algorithm for solving large
instances of TSP.

Chapter 4

Traveling Visitor Problem

Results of this chapter are published in the following articles:

• M. Djordjevic, A. Brodnik and M. Grgurovic, The Traveling Visitor Problem
and the Koper Algorithm for Solving It, accepted by 25th Conference of Euro-
pean Chapter on Combinatorial Optimization, ECCO 2012, Antalya, Turkey.

• M. Djordjevic, A. Brodnik and M. Grgurovic, The Traveling Visitor Problem
and Algorithms for Solving It, accepted by 3rd Student Conference on Opera-
tional Research, SCOR 2012, Nottingham, UK

4.1 Introduction

In the Traveling Salesman Problem (TSP) a set {C1, C2, ...CN} of cities is considered
and for each pair (Ci, Cj) where i 6= j, a distance d(Ci, Cj) is given. The goal is to
find a permutation π of the cities that minimizes the quantity

N−1
∑

i=1

d(Cπ(i), Cπ(i+1)) + d(Cπ(N), Cπ(1)). (4.1)

This quantity is referred to as the tour length since it is the length of the tour
a salesman would make when visiting the cities in the order specified by the permu-
tation π, returning at the end to the initial city. We will concentrate in this paper
on the symmetric TSP (STSP) in which the distances satisfy d(Ci, Cj) = d(Cj , Ci)
for 1 ≤ i, j ≤ N . The TSP is known to be NP-hard [74]. The case with symmetric
distances is well researched and there are many algorithms which perform well even
on large cases [3, 5]. In the literature [61, 73] the Traveling Salesman Problem is
usually represented and considered as a graph theoretical problem. For more details
about TSP see Section 2.1.

An instance of the STSP can be seen as a complete graph G = (V,E) where the
set of vertices V is given by the cities and edges between each city in the graph with
corresponding edge weights d(Ci, Cj). The STSP then translates to the problem of
finding a Hamiltonian Tour of minimal length in the graph G.

Applications of the TSP and its variations go way beyond the route planning
problem of a traveling salesman and span over several areas of knowledge including

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 42

mathematics, computer science, operations research, genetics, engineering, and elec-
tronics. In addition, there are many different variations of TSP which are described
and explored in the literature and also variations derived from everyday life. Some
of them are: Machine Scheduling Problems, The time dependent TSP, The delivery
man problem which is also known as the minimum latency problem and the traveling
repairman problem, for details on this problems, we refer to Section 2.1.3.

Traveling Tourist Problem [93] is a problem in which a tourist wishes to see
all monuments (nodes) in a city, and so must visit each monument or a neighbour
thereof (it is assumed that a monument is visible from any of its neighbours, the
edges therefore represent lines of sight). The resulting walk will therefore visit a
subset of all nodes in the graph. The Traveling Tourist Problem shares a similar
name with our problem but is otherwise a very different problem.

The STSP can be solved using the Grafted Genetic Algorithms (GGA) as was
shown in [34], [37], [35], [36] and in Section 3. The currently most efficient im-
plementation of the branch-and-cut method which was introduced by Padberg and
Rinaldi [113] for solving the symmetric case of Traveling Salesman Problem is Con-
corde [4]. Concorde’s TSP solver has been used to obtain the optimal solutions to
the full set of 110 TSPLIB instances, the largest having 85,900 cities. For more de-
tails see Section 2.2.5. Finally, in a graph G we can find besides shortest closed walk
also the shortest path between any pair of vertices. This problem is in the literature
known as all-pairs shortest path problem [28]. It aims to compute the shortest path
from each vertex u to every other vertex v. The Floyd-Warshall algorithm [28] is an
efficient algorithm to find all-pairs shortest paths on a graph G. The all-pairs short-
est path problem and the Floyd-Warshall algorithm are in more details described in
Sections 2.1.5 and 2.1.5, respectively.

4.2 Traveling Visitor Problem

Visitors have arrived in a hotel in some new town, with a desire to visit all interesting
sites in a city exactly once and to come back to the hotel. Visitors in generally use
their feet for traveling through the city, for which they use streets, walking trails and
pedestrian zones. The goal is to minimize the visitors traveling.

The Traveling Visitor Problem is a version of the Traveling Salesman Problem
with a difference that the traveling visitor, during its visit of sites, can not fly over the
buildings in the city, instead visitors must go around these obstacles. This difference
is demonstrate in the Figure 4.1. This means that the Euclidean distances [55,110],
as we know them in the Euclidean TSP, are in this case impossible (direct edge from
i to j in Figure 4.1). Visitors use the walking paths and pedestrian zones of variable
length. These limits determine the weight of edges connecting the vertices in the
graph.

The Traveling Visitor Problem is stated as: given a connected, weighted graph
G = (V,E, c), with a set of vertices V = S ∪ X and S ∩ X = ∅, S is the set of
interesting sites in the city (vertices i and j in Figure 4.1), X is set of crossroads in
the city (vertices k and m in Figure 4.1), a set of edges E, and a cost of traveling c.
The goal is to find the shortest closed walk through all vertices from S, according to

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 43

c in graph G, although we may travel through vertices from X.
The concepts we summarised above can be modified easily to take the directions

of the edges into account. The asymmetric traveling visitor problem (ATVP) is then
similar to the symmetric TVP above, i. e. it is the problem of finding a closed walk
of minimal length in a weighted graph.

This problem, by the knowledge of the authors, has no references in publications
due date of writing it.

4.2.1 Algorithms for solving TVP

First thinking about possible solution for Traveling Visitor problem is motivated by
the intuitive thinking of a tourist when the concerned get in possession of a tourist
map. That is: visit the first place from the map, then second one, then nth, until all
sites from the map are visited and then come back to the starting site. The results of
this method depend directly on the order in which the interesting sites are listed on
the map. Furthermore, this intuitive method does not contain any scientific value.

First proposed method for solving the Traveling Visitor Problem is the Naïve
algorithm, shown in Algorithm 10. In the first line of pseudocode we can distinguish
next parameters: S belongs to interesting sites in the city, X belongs to crossroads
in the city, a set of edges E, and W represents the distance matrix of the graph G,
(S ∪X) × (S ∪X). In the first step of an algorithm the Traveling Visitor Problem
is solved as an instance of Traveling Salesman Problem. In next, from the distance
matrix W we produce a distance matrix Z (S ×S), which is the solution of all-pairs
shortest path problem (APSP). Finally, in the loop block (lines 6 through 8) the
solution for TVP is given by applying the shortest paths from Z into T .

Algorithm 10 Naïve Algorithm
1: procedure Naïve(S,X,E,W)
2: T ← TSP (W)
3: Z ← S × S
4: Z ← APSP (S ∪X,E,W)
5: cost ← 0
6: for all (i, j) ∈ T : do
7: cost ←cost +Zij

8: end for
9: end procedure

The second proposed method for solving the Traveling Visitor Problem is the
Koper algorithm, shown in Algorithm 11. The first line of pseudocode contains the
same parameters as Naïve algorithm. In the first step we find the all pairs shortest
paths in our graph G. As an input a distance matrix W is used and as the output
a distance matrix Z is obtained. In the next step we solve the Traveling Salesman
Problem on the distance matrix Z. Furthermore, we get the solution T , which is a
solution for Traveling Visitor Problem.

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 44

Algorithm 11 Koper Algorithm
1: procedure Koper(S,X,E,W)
2: Z ← S × S
3: Z ← APSP (S ∪X,E,W)
4: T ← TSP (Z)
5: end procedure

4.2.2 Adapted Floyd-Warshall algorithm

The problem stated in the previous section is of finding the shortest paths between
each pair of vertices u and v, where u, v ∈ S, in the graph G. This can be cast as
a run-of-the-mill all-pairs shortest path problem. Indeed, using the Floyd-Warshall
algorithm, we can obtain a solution in time Θ(|V |3). However, the nature of our
problem is somewhat more restrictive: we are only interested in the shortest paths
between S × S, yet we would still like the paths to go through vertices from the set
X if they reduce the overall path length. In contrast, the Floyd-Warshall algorithm
computes a shortest paths between V ×V . To this end, we propose a simple modifica-
tion which reduces the running time, albeit not asymptotically. The Floyd-Warshall
algorithm is shown in Algorithm 12, where W is the distance matrix of the graph G.

Algorithm 12 Floyd-Warshall
1: procedure Floyd-Warshall(V,W)
2: for all k ∈ V do
3: for all i ∈ V do
4: for all j ∈ V do
5: Wij := min(Wij ,Wik +Wkj)
6: end for
7: end for
8: end for
9: end procedure

Let x = |X| and s = |S|. Using these quantities, the number of iterations of the
Floyd-Warshall algorithm can be written as (s + x)3 = s3 + x3 + 3s2x + 3x2s. We
offer a different approach, shown in Algorithm 13.

The number of iterations of algorithm 13 can be plainly seen to equal: s3 +
x3 + s2x + x2s. The best gain, when compared to Floyd-Warshall, is when s = x
which amounts to exactly one half of all iterations of the Floyd-Warshall algorithm.
Although it takes fewer iterations, it also computes fewer shortest paths, since we are
only interested in S×S. We will prove the correctness of Algorithm 13 by appealing
to the graph shown in Fig. 4.2.2.

In order to examine how algorithm 13 works, it is helpful to visualize sets of
vertices, as shown in Fig. 4.2.2. It should be noted that we will make use of a
sparsely connected graph, which simplifies the analysis. The result does not change
for complete graphs, since the algorithm itself makes no such assumptions.

The first call to Floyd-Warshall (line 2) in algorithm 13 finds the all-pairs short-
est paths between the vertices in X, but using only vertices from X on the paths

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 45

Algorithm 13 Adapted Floyd-Warshall Algorithm
1: procedure Adapted(S,X,W)
2: Floyd-Warshall(X,W)
3: for all k ∈ X do
4: for all i ∈ X do
5: for all j ∈ S do
6: Wij := min(Wij ,Wik +Wkj)
7: end for
8: end for
9: end for

10: for all k ∈ X do
11: for all i ∈ S do
12: for all j ∈ S do
13: Wij := min(Wij ,Wik +Wkj)
14: end for
15: end for
16: end for
17: Floyd-Warshall(S,W)
18: end procedure

themselves. Note that there are two such sets shown in Fig. 4.2.2, i.e. X ′ and X ′′,
with no direct edges between them. Thus, we can only find the shortest paths inside
the individual sets. Once the paths are found, we can find our way from any vertex
in X to any vertex in X if a path that does not take us through vertices in S exists.

The first loop block (lines 3 through 9) of Algorithm 13 finds every shortest path
starting in X and ending in S, by going through vertices in X only. Every vertex
in X knows the path to every other vertex in X, as long as the path does not go
through vertices in S. At this point there must exist a pair of vertices u ∈ X, v ∈ S
where Wu,v <∞ 1. Thus, when the first loop block finishes, every vertex in X knows
the shortest paths through X to some vertices in S. In Fig. 4.2.2 this means that
the vertices in X ′ know the shortest paths through X ′ that end in S′ or S′′. The
same is true for vertices in X ′′.

Finally, the second loop block (lines 10 through 16) of the algorithm finds every
shortest path starting in some vertex in S, going through some vertex in X and
ending in some vertex in S. The only vertices in S that have paths to vertices in X
are those that have edges that connect them. However, the vertices in X that they
are connected to, know the shortest paths through X ending in some vertices in S.
Thus, the algorithm connects the sets S′ and S′′ via the shortest paths through X ′

and X ′′.
At the end (line 17), we run the Floyd-Warshall algorithm on S. Since the sets

S′ and S′′ have been connected via shortest paths through X, we obtain the APSP
solution for S × S whereby the paths can go through X.

1If there were no such pair, a path from S to S going through X would not exist.

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 46

Theorem 4.2.1 Algorithm 13 computes the shortest paths between all pairs S × S
in G.

Proof See discusion above.

4.3 Experiment

For testing our strategy and comparing it to other methods we used the real instances
of the Traveling Visitor Problem, which were made from official tourist maps of cities
of Koper, Belgrade and Venice. In the instance of Belgrade two different cases were
made and they differed in the size of the problem, i.e. the number of vertices in
the graph. From the publicly available library, TSPLIB, of sample benchmarks for
the TSP and related problems, two instances of the symmetric traveling salesman
problem were taken, modified and tested.

These two instances were modified in such a way that a new graph G′ was made
satisfying the conditions of connected, weighted graph. Furthermore we split V into
a set of vertices S and set of vertices X, such that |S| = |X| = |V |/2. A vertex
degree 5 is arbitrarily assigned, inspired by the case of real instances, and means
that from every vertex from V there is exactly 5 edges going to the other vertex
from V . The 5 edges per vertex were chosen randomly, according to a uniform
probability distribution.

Altogether 5 instances were tried out, with different sizes which range from 120
to 1002 vertices per instance. We compared two methods for solving the Traveling
Visitor Problem. The first method is the Naïve algorithm, shown in Algorithm 10.
The second tested method is the Koper algorithm, shown in Algorithm 11. For
solving the TSP, as one step in both algorithms, we used the Concorde Algorithm,
presented in Section 2.2.5. Furthermore, for solving the APSP, as a part of both
algorithms, we used the Adapted Floyd−Warshall algorithm, which was presented
in Section 4.2.2.

4.4 Results

The results of the experiment are summarized in Table 4.1. Five instances were tried
out, with different sizes, ranging from 120 to 1002 vertices per instance. The names
of these cases are in the first column. The second column contains the size of the
problem, i.e. the number of vertices. The third column in Table 4.1 corresponds
to the number of vertices in set S and in the top three instances the number of
interesting sites from tourist maps. The fourth column contains names of the two
tested methods. The fifth column corresponds to the length of the tour i.e. the
cost of a solution which was obtained in the experiment. The column is titled Tour
Cost and in all six cases the shortest tours are obtained by Koper Algorithm. The
results for Koper Algorithm are coloured in red. The last column corresponds to
the difference in tested methods displayed in percentages. The first tested method,
the Naïve algorithm, performed poorly in comparison to the Koper algorithm. The
quality differs from 6.52% in the case of Belgrade163 to 354.46% in the case of pr1002

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 47

Name (V) (S) Methods Tour Cost Difference

Naïve 4738 17.22%

Koper 4042 0.00%

Naïve 100389 6.52%

Koper 94246 0.00%

Naïve 122119 8.77%

Koper 112275 0.00%

Venice 210 72 Naïve 26648 24.24%

Koper 21448 0.00%

Naïve 11818732 354.46%

Koper 2600585 0.00%

Naïve 921499 249.08%

Koper 263983 0.00%

Koper 120 55

Belgrade

250 90

53163

lin318 318 159

pr1002 1002 501

Table 4.1: Two techniques for solving the Traveling Visitor Problem

instance. Although the algorithms are similar, (the difference is whether we first solve
the TSP then APSP, it is the case in Naïve algorithm, or we first solve APSP and
then TSP which is the case in Koper algorithm) the difference in provided solutions
between two tested methods is significant.

4.5 Conclusions

The goal of this paper was to describe a new problem from graph theory, named the
Traveling Visitor Problem. Although the new problem is similar to the well known
Traveling Salesman Problem, when we try to solve it with the Naïve Algorithm we
get solutions far from optimal. The minimum cost solutions for the Traveling Visitor
Problem instances tested in the paper are provided by Koper Algorithm. The tested
benchmarks are combined from three real instances made using tourist maps of cities
of Koper, Belgrade and Venice and two instances of modified cases from TSPLIB. In
all tested cases the Koper Algorithm significantly outperforms the Naïve Algorithm
for solving the Traveling Visitor Problem.

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 48

k

ij

m

Figure 4.1: TSP and TVP, Two rectangles represent buildings (obstacles) in the city.
Red nodes represent interesting sites in the city (vertices from set S), black nodes
represent crossroads in the city (vertices from set X), the red line represent the
euclidean shortest connection between two interesting sites (this is the case in TSP),
black lines represent the connection between two interesting sites, going through two
crossroads (this is the case in TVP)

S′ X ′

S′′X ′′

Figure 4.2: Each node in the graph represents an arbitrary amount of vertices from a
single set that are arbitrarily interconnected. The edges represent (arbitrarily many)
connections to other such sets. Note, that S′, S′′ ⊂ S and X ′,X ′′ ⊂ X.

Chapter 5

Conclusion

The goal of the Thesis was to investigate influence of grafting a 2-opt based lo-
cal searcher into the standard genetic algorithm, for solving the Traveling Salesman
Problem. It is known that genetic algorithms are very successful when implemented
for many NP-hard problems. However, they are much more effective if some specific
knowledge about particular problem is utilized. The TSP is well researched problem
with many such improvements, especially when the restricted version of the problem
with Euclidean distance is considered. In our experiment in Chapter 3 we compared
two direct techniques, with our grafted genetic algorithms. Solutions from Concorde
and greedy algorithm were added for better comparison. Quantitative results on test
cases from TSPLIB show that grafted algorithms have advantages. Even when both
components have serious drawbacks, their grafted combinations exhibit very good be-
haviour. Results on examples from TSPLIB show that this method combines good
qualities from both methods applied and significantly outperforms each individual
method. In the second part of the experiment in Chapter 3 an influence of partial
grafting a 2-opt local searcher into genetic algorithm was studied. The best perfor-
mance was achieved in a configuration with 90% frequency use of local searcher. In a
comparison with a performance of GGAemc the same quality of results was achieved
in a shorter time, on average a 7% of running time was spared. The cases with 10%
and 20% frequency use of local search provides fast and far from optimal solutions
but still better then the GAemc and GAdpc. The configurations with 50% frequency
use of local searcher present a good examples of trade-off between a running time
and quality, especcialy in setting with ending sequence of local searcher. The best
gain is attained when a local searcher is used in an ending sequence of the algorithm
and in frequency not less then 50% and not more than 90%.

The second goal of the Thesis was to describe a new problem from graph theory,
named the Traveling Visitor Problem. Although the new problem is similar to the
Traveling Salesman Problem, when we try to solve it with the Naïve algorithm we
get solutions far from optimal. The minimum cost solutions for the Traveling Visitor
Problem instances tested in the paper are provided by Koper Algorithm. The tested
benchmarks are combined from three real instances made using tourist maps of cities
of Koper, Belgrade and Venice and two instances of modified cases from TSPLIB. In
all tested cases the Koper Algorithm significantly outperforms the Naïve Algorithm

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 50

for solving the Traveling Visitor Problem.
The results of doctoral dissertation represents the contribution to bridging the

gap between theoretical computer science and its application in practice. Also to
better understanding and modeling of real problems in the economy, represented as
the NP-hard problems from graph theory as well as a contribution to the optimization
methods for solving these hard problems.

Povzetek v slovenskem jeziku

5.1 Uvod

Ko sem prišel leta 2007 na podiplomski doktorski študij računalništva, iz Beo-
grada v Koper, sem prišel z veliko željo, da spoznam mesto, v katerem bom preživel
naslednja štiri leta. Mestno jedro mi je bilo takoj všeč predvsem zaradi številnih
znamenitosti, natančno 55, ki se nahajajo tudi na turističnem zemljevidu Kopra.
Ker je doktorski študij naporen in nisem imel veliko prostega časa, sem se začel
spraševati kako bi bilo, če bi lahko svoj obhod po mestnih znamenitostih optimiziral
na tak način, da porabim najmanj možnih korakov in tako prihranim nekaj časa.
Problem sem poimenoval problem potujočega obiskovalca (angl. Traveling Visitor
Problem, (TVP)).

V zgodnjih 30. letih 20. stoletja, je avstrijski matematik Karl Menger izzval takra-
tno raziskovalno skupnost, naj z matematičnega vidika preuči, sledeč problem [98]:
Glasnik želi obiskati vsako mesto s seznama na katerem je n mest natanko enkrat
in se nato vrniti v svoje mesto pri tem so cene potovanj iz mesta i v mesto j znane
vnaprej. Vprašanje je torej kateri obhod je najcenejši? Problem Trgovskega Potnika
(angl. Traveling Salesman Problem, (TSP)) je formalno definiran na polnemu grafu
G = (V,E), kjer je V = {v1, v2, ..., vn} množica vozlišč, E množica povezav in s
cenilno funkcijo c(i, j), ki povezavi (i, j) ∈ E priredi določeno ceno.

TSP lahko obravnavamo tudi kot problem permutacij. Naj bo Pn množica vseh
permutacij iz množice {1, 2, ..., n}. Potem je problem trgovskega potnika poiskati
π = (π(1), π(2), ..., π(n)) v Pn, za katero velja, da je cπ(n)π(1) +

∑n−1
i=1 cπ(i)π(i+1),

minimalen.
TSP je eden izmed najpomembnejših predstavnikov večje množice problemov,

imenovane kombinatorični optimizacijski problemi [65]. Ker spada TSP v razred
NP-težkih (angl. NP-Hard) problemov [74], učinkovitega algoritma za TSP ne
poznamo. Natančneje, takšen algoritem obstaja če in samo če sta razreda P in NP
enaka. S praktičnega vidika to pomeni, da ne poznamo natančnega algoritma za
katerikoli TSP primer z n vozlišči, ki se obnaša značilno bolje, kot algoritem, ki
izračuna vseh (n− 1)! možnih obhodov ter vrne obhod z najmanjšo ceno.

V praksi lahko za reševanje tega problema uporabimo tudi drugačen pristop.
Določeni TSP primer, z n vozlišči ima lahko katerikoli obhod, ki poteka skozi vsa
vozlišča n in predstavlja možno rešitev, ki je zgornja meja (angl. upper bound) za

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 52

najnižjo možno ceno. Algoritem, ki v polinomskem času (angl. polynominal time)
konstruira možne rešitve s to zgornjo mejo se imenuje hevristika [12,118]. Načeloma,
ti algoritmi tvorijo rešitve, vendar brez zagotovila o kakovosti rešitve glede na razliko
med njihovo ceno in optimalno ceno.

Poznamo dve vrsti TSP: simetrični TSP in asimetrični TSP. V simetrični obliki,
znani pod imenom STSP [71, 72, 91, 95], je razdalja med vozliščema i in j enaka
razdalji med vozliščema j in i. V primeru asimetričnega TSP (ATSP) [14,16,18,24],
takšna simetrija ne obstaja. Poleg tega obstaja še vrsta različnih variacij TSP, ki so
opisane in raziskane v literaturi ter predstavljene v doktorski disertaciji v Poglavju 2.
Spodaj povzemam nekatere izmed njih.

Grupirani TSP (angl. Clustered TSP) [63], ozko-grlni TSP (angl. Bottleneck
TSP) [61], posplošen TSP (angl. Generalized TSP) [60,77], problem glasnika (angl.
Messenger Problem) [98], ki je znan tudi kot problem izgubljenega prodajalca (angl.
Wondering Salesman Problem) [76], problem zamenjave (angl. The swapping prob-
lem) [2], problem minimalne latentnosti (angl. Minimum Latency Problem) [11]
znan tudi kot problem dostavljalca (angl. Delivery Man Problem) [61] ali problem
potujočega mojstra (angl. Traveling Repairman Problem) [51], problem seizmičnih
plovil (angl. Seismic Vessel Problem) [59], ki je posplošitev problema skladiščnega
dvigala (angl. Stacker Crane Problem) [25], problem potujočega turnirja (angl. Trav-
eling Tournament Problem) [41], problem lokacije objekta (angl. Facility Location
Problem) [40]. In končno problem potujočega obiskovalca, ki je podrobno opisan,
raziskovan in rešen v doktorski disertaciji v Poglavju 4, za ta problem ne poznamo
nobenega vira v literaturi.

Prvi koraki v reševanju TSP so bili klasični poskusi. Te metode so sestavljene iz
natančnih in hevrističnih algoritmov. Natančne metode, kot so presek ravnine (angl.
cutting planes) [31], vejitev in povezovanje (angl. branch and bound) [27, 31], lahko
optimalno rešijo relativno majhne probleme (v odvisnosti od velikosti n), med tem ko
metode, kot so različne variante Lin-Kernighan algoritma [6, 45, 68, 77] in Concorde
tehnike [3–5] nam dajo relativno dobre rezultate, tudi za večje probleme. Posamezni
algoritmi, zasnovani na požrešnih principih, kot sta najbližji sosed (angl. nearest
neigbour) [61] in vpeto drevo (angl. spanning tree) [67], se prav tako uporabljajo za
reševanje TSP.

Natančne metode za reševanje TSP rezultirajo z eksponentnimi računskimi kom-
pleksnostmi, tako da so v izogib obstoječim slabostim potrebne nove metode. Te
metode vključujejo različne principe optimizacijskih tehnik, naravno orientirani op-
timizacijski algoritmi, populacijsko orientirani optimizacijski algoritmi, ter drugi.
Različna bitja in naravni sistemi, ki se razvijajo v naravi so zanimivi in dragoceni
izvori navdiha, za raziskovanje in ustvarjanje novih sistemov in algoritmov za reše-
vanje TSP, ter njegovih variacij. Nekatere od teh metod so predstavljene v doktorski
disertaciji v Poglavju 2. Naj jih naštejemo nekaj.

Evolutivno računanje (angl. Evolutionary Computation) [99,104,123,132], genet-
ski algoritmi (angl. Genetic Algorithms) [42, 49, 50, 101, 107, 114, 122, 126, 130, 131,
135, 136], memetični algoritmi (angl. Memetic Algorithms) [60, 85–87, 102, 110], sis-
temi mravelj (angl. Ant Systems) [38], simulirano ohlajanje (angl. Simulated An-
nealing) [82], in naposled cepljeni genetski algoritmi (angl. Grafted Genetic Algo-
rithms) [34], [37], [35], [36]. Slednji predstavljajo vrsto hibridnih genetskih algorit-

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 53

mov in so raziskani, podrobno opisani ter demonstrirani v doktorski disertaciji v
Poglavju 3.

5.2 Vsebina disertacije

Doktorska disertacija po Pravilniku o pripravi in zagovoru doktorske disertacije na
Univerzi na Primorskem, vsebuje naslednja poglavja:

• Zahvala

• Povzetek

• Kazalo vsebine

• Poglavje 1 - Uvod

• Poglavje 2 - Ozadje

– 2.1 Problem Trgovskega Potnika
– 2.2 Optimizacijski Algoritmi

• Poglavje 3 - Cepljeni Genetski Algoritmi

• Poglavje 4 - Problem Potujočega Obiskovalca

• Zaključek

• Literatura

• Kazalo

• Izjava

V poglavju Ozadje smo predstavili osnovne pojme trgovskega potnika in opti-
mizacijskih algoritmov, s pomočjo katerih so lahko nadaljnja poglavja disertacije
postala razumljiva tudi širšemu krogu bralcev. Preostali poglavji so namenjeni pred-
stavitvi doseženih ciljev disertacije. Poglavja so razdeljena na več podpoglavij.

V doktorski disertaciji sta obdelani dve temi iz teoretičnega računalništva. Op-
timizacijsko hevristična metoda imenovana cepljeni genetski algoritmi (GGA) in
kombinatorično optimizacijski problem, imenovan problem potujočega obiskovalca
(TVP). Cilja doktorske disertacije sta naslednja:

Cepljeni genetski algoritmi: Cilj je pokazati kakovost dobljenih rešitev in hitrost
izvajanja cepljenega genetskega algoritma, kadar se uporablja za probleme Simetri-
čnih TSP-jev, ki so na voljo na svetovnem spletu, v obliki splošno priznanih ocenjeval-
nih primerov (angl. benchmarks), kot tudi dejanskih primerov, nastalih za problem
potujočega obiskovalca.

Problem potujočega obiskovalca: Cilj je opisati in definirati problem iz realnega
življenja, ustvariti realne primere za mesta v okolici in rešiti primere problemov
z uporabo nove metode ter znanih metod, ki bodo skupaj prikazane v doktorski
disertaciji. Raziskovalni cilj disertacije je dokazovanje spodaj navedenih Hipotez 1
in 2.

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 54

Hipoteza 1: Metoda za reševanje TSP, sestavljena iz dveh neodvisnih metod,
genetskega algoritma in 2-opt hevristike, združuje kakovosti obeh metod na takšen
način, da ju znatno prekaša, glede na kakovost rešitve.

Hipoteza 2: Glede na kakovost rešitve posebna metoda za reševanje problema
potujočega obiskovalca, prekaša splošne algoritme za reševanje problema trgovskega
potnika, ko jih uporabimo za reševanje problema potujočega obiskovalca.

5.3 Raziskava

5.3.1 Cepljeni Genetski Algoritmi

Botanično cepljenje je postopek, ko je tkivo prve rastline pritrjeno na tkivo
druge rastline. Cepljenje lahko zmanjša čas cvetenja in skrajša čas rejskega pro-
grama. Lokalni iskalec je razširitev konvencionalnega genetskega algoritma, saj ne
obstaja potreba po uporabi komponent genetskega algoritma. To omogoča opti-
mizacijo posameznih genomov, izven evolucijskega procesa. V našem algoritmu po
izvedeni rekombinaciji (vrstica 7 v Algoritmu 9), se lokalni iskalec uporablja za op-
timizacijo vsakega genoma potomcev (vrstica 8 v Algoritmu 9). Zaradi uporabe
omenjene zunanje optimizacijske metode, genetski algoritem ni več čist, zato govo-
rimo o cepljenem genetskem algoritmu [34], [37]. Omenjena oblika optimizacije se
izvaja lokalno ter spreminja genom s pomočjo hevrističnega spreminjanja rešitve. 2-
opt lokalni iskalec 2.2.3 je lokalna optimizacijska metoda za TSP, ki je bila vcepljena
v standardni genetski algoritem (vrstica 8 v Algoritmu 9). Ta lokalna optimizacijska
metoda, izvaja 2-opt hevristiko, ki izmenjuje povezave grafa z namenom zmanjšanja
dolžine obhoda. Postopek izmenjave je sestavljen iz odstranjevanja dveh povezav
iz trenutnega obhoda in ponovnega povezovanja na najboljši možen način, poglej
Figuro 3.1.

V opravljenem poskusu smo testirali vpliv cepljenja algoritma lokalnega iskalca z
genetskim algoritmom za reševanje problema trgovskega potnika. Za testiranje naše
strategije in primerjave le te z ostalimi rešitvami, smo uporabili primere simetričnega
problema trgovskega potnika, ki so na voljo na spletu, v knjižnici TSPLIB [119].
Uporablili smo 20 primerov, z različno kompleksnostjo in obsegom od 14 do 150
mest, Tabela 3.1. Primerjali smo našo metodo (Cepljeni Genetski Algoritem), katere
predstavnika sta algoritma GGAemc in GGAdpc, s štirimi drugimi metodami. Za
zgornjo mejo kakovosti rešitve smo uporabili požrešno hevristiko (angl. Greedy
Heuristic 2.2.2), za spodnjo mejo smo uporabili globalni minimum, pridobljen s
Concorde 2.2.5. Nato smo primerjali našo cepljeno metodo z 2-opt in genetskim
algoritmom.

Rezultati eksperimenta so predstavljeni v Tabeli 3.1. Šesti stolpec v tabeli pred-
stavlja rešitve našega cepljenega algoritma, ki je bil programiran s pomočjo križanja
povezav (angl. edge map crossover 2.2.4), kot operator za rekombinacijo (GGAemc).
V sedemnajstih od dvajset obravnavanih primerov je bila najdena optimalna rešitev,

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 55

preostali trije primeri odstopajo od optimalne rešitve za 0,01, 0,10 in 0,22 odstotka.
Rešitve so bile najdene hitro, porabili smo med 0,6 in 15,2 sekund ter v relativno
majhnem številu generacij. Sedmi stolpec v Tabeli 3.1, pripada našemu cepljenemu
genetskemu algoritmu, ki vsebuje križanje ohranjanja razdalje (angl. distance pre-
serving crossover 2.2.4), kot operator za rekombinacijo (GGAdpc). V enajstih od
dvajset obravnavanih primerov je bila najdena optimalna rešitev, v preostalih devetih
primerih so odstopanja od optimalne rešitve od 0,13 do 0,32 odstotka. V primerjavi
z GGAemc, sta čas izvajanja in število generacij GGAdpc nekoliko manjša, posebej
v nižjem predelu tabele, ki predstavlja kompleksnejše primere.

Kvantitativni rezultati na testnih primerih iz TSPLIB kažejo, da imata cepljena
algoritma, GGAemc in GGAdpc prednosti. Kljub številnim pomankljivostim njunih
komponent, se njune kombinacije cepljenja zelo dobro obnesejo. Rezultati primerov
iz TSPLIB kažejo, da omenjena metoda cepljenja združuje dobre lastnosti iz obeh
uporabljenih metod in občutno prekaša vsako izmed njiju.

5.3.2 Problem Potujocega Obiskovalca

Obiskovalci so prispeli v hotel v nekem novem mestu z željo, da obiščejo vse
zanimivosti mesta natanko enkrat in se po ogledu vrnejo v hotel. Na ogled mesta se
odpravijo peš - po ulicah, sprehajalnih zonah in poteh za pešce. Cilj je skrajšati pot
obiskovalca.

Problem potujočega obiskovalca je izpeljan iz problema trgovskega potnika , pri
čemer velja pravilo, da obiskovalec izbira samo med potmi, ki jih je možno prehoditi.
To pomeni, da so evklidske razdalje [55, 110], kot jih poznamo v evklidskem TSP,
v našem primeru napačne. Obiskovalci uporabljajo sprehajalne poti in območja za
pešce, ki so različno dolge. Te omejitve določajo težo povezav, ki povezujejo vozlišča
v grafu.

Definicija TVP je sledeča: Imamo graf G = (V,E, c), kjer je množica vozlišč
V = S ∪ X in S ∩ X = ∅, kjer sta S zanimivosti mesta in X križišča, E množica
povezav ter c cena potovanja. Cilj je poiskati najkrajši zaprt sprehod (angl. closed
walk, poglavje 2.1.1) skozi vsa vozlišča S (glede na c) v grafu G, pri čemer se lahko
sprehodimo skozi X.

Prva predlagana metoda za reševanje problema potujočega obiskovalca je Naivni
algoritem (angl. Naïve Algorithm), prikazan v Algoritmu 10. V prvi vrstici psev-
dokode, lahko razberemo naslednje parametre: S pripada zanimivim lokacijam v
mestu, X pripada križiščem, E pripada množici povezav, W pa predstavlja matriko
povezav grafa G, (S∪X)×(S∪X). V prvem koraku algoritma je problem potujočega
obiskovalca rešen kot primer problema trgovskega potnika. V naslednjem koraku, iz
matrike povezav W izdelamo matriko povezav Z dimenzij (S × S), ki predstavlja
rešitev problema najkrajših poti vseh parov (angl. All-Pairs Shortest Paths Problem
(APSP), poglavje 2.1.5). V zanki (od vrstice 6 do 8) je prikazana rešitev za TVP.
Druga predlagana metoda za reševanje problema potujočega obiskovalca je algoritem
Koper (angl. Koper Algorithm), prikazan v Algoritmu 11. Prva vrstica psevdokode
vsebuje enake parametre kot Naivni algoritem. V prvem koraku poiščemo najkrajše
poti med vsemi pari vozlišč množice S v grafu G. Vhodno matriko razdalj označimo z

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 56

W in izhodno matriko razdalj z Z. V naslednjem koraku, rešimo problem trgovskega
potnika za matriko razdalj Z. Poleg tega smo dobili T , ki je rešitev za problem
potujočega obiskovalca.

Za testiranje naše strategije smo uporabili primere problema potujočega obisko-
valca, ki smo jih izdelali iz uradnih turističnih zemljevidov za mesta Koper, Beograd
in Benetke. V primeru Beograda smo izdelali dva primera, ki se razlikujeta po ve-
likosti problema, oziroma po številu vozlišč v grafu. Iz javno dostopne knjižnice,
TSPLIB, smo si izbrali, spremenili in testirali dva primera problema simetričnega
trgovskega potnika. Izvedli smo poskuse za 5 primerov, z različnimi velikostmi, ki so
od 120 do 1002 vozlišč za posamezen primer.

Za reševanje problema potujočega obiskovalca smo primerjali dve metodi. Prva
metoda je gore omenjeni Naivni algoritem, prikazan v Algoritmu 10. Druga metoda
je algoritem Koper, prikazan v Algoritmu 11. Za reševanje TSP, ki je eden izmed
korakov pri obema algoritmoma, smo uporabili algoritem Concorde, ki je predsta-
vljen v poglavju 2.2.5. Za reševanje problema najkrajše poti vseh parov smo uporabili
prilagojeni Floyd-Warshallov algoritem, ki je bil predstavljen v poglavju 4.2.2.

Rezultati poskusa so predstavljeni v Tabeli 4.1. Peti stolpec Tabele 4.1, pred-
stavlja dolžino sprehoda (cena rešitve, ki smo jo dobili pri poskusu). Stolpec se
imenuje cena sprehoda (angl. tour cost) in v vseh šestih primerih so najkrajši spre-
hodi pridobljeni z algoritmom Koper. Zadnji stolpec v Tabeli 4.1, predstavlja razliko
med uporabljenimi metodami, prikazano v odstotkih. Prva metoda, naivni algoritem,
se je odrezal veliko slabše od algoritma Koper. Kakovost rešitev varira v intervalu
od 6,52 odstotka, v primeru Belgrade163, do 354,46 odstotka, v primeru pr1002.

Namen tega raziskovanja je bil opis in rešitev novega problema v teoriji grafov,
imenovanega problem potujočega obiskovalca. Čeprav je nov problem podoben do-
bro znanemu problemu trgovskega potnika, ko ga poskušamo rešiti z Naivnim al-
goritmom, so rezultati daleč od optimalnih. V vseh testiranih primerih problema
potujočega obiskovalca, algoritem Koper občutno prekaša Naivni algoritem.

5.4 Metodologija

Glavno orodje za opis in definicijo problema potujočega obiskovalca je teorija grafov.
Za realistično predstavitev vozlišč našega grafa, kot tudi povezav ter cen je uporabljen
geografski informacijski sistem "Google Earth", čigar podatkovo bazo smo uporabili
za pridobitev mestnih znamenitosti, križišč in sprehajalnih poti. Pomembno vlogo
za dokazovanje hipoteze 1 ima platforma za raziskovanje genetskih algoritmov "EA
Visualizer" [15], aplikacija napisana v programskem jeziku Java.

Za dokazovanje hipoteze 2 smo uporabili in ustrezno nadgradili Floyd-Warshall-
ov algoritem [28], za iskanje najkrajših poti med vsemi pari vozlišč grafa G =
(V,E, c). Uporabili smo tudi znane optimizacijske metode za reševanje simetričnega
in asimetričnega problema trgovskega potnika, presek-ravnine [111, 113], na čigar
osnovi temeljijo metode Concorde [3–5] in hevristične metode Lin-Kernighan algo-
ritma [6,45,68,77]. Obe aplikaciji sta pisani v programskem jeziku AnsiC. Poleg tega
za dokazovanje hipoteze 2 smo uporabili znanje iz matematičnih modelov znanih kot
problem linearnega programiranja (angl. linear programming problems) [23,128], kot

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 57

tudi simpleks metode (angl. simplex methods) [31].

5.5 Doprinos k znanosti

Doprinos k znanosti predstavljajo naslednji rezultati:

• Izdelava cepljenega genetskega algoritma za reševanje problema trgovskega pot-
nika.

• Potrditev, da problem trgovskega potnika lahko uspešno rešimo z uporabo
cepljenega genetskega algoritma.

• Izdelava posebne metode za reševanje problema potujočega obiskovalca.

• Izdelava realnih primerov problema potujočega obiskovalca za mesta Koper,
Beograd in Benetke.

• Potrditev da vsak primer problema potujočega obiskovalca, ki je rešen z pose-
bno metodo, predstavlja zelo zadovoljivo rešitev.

Rezultati doktorske disertacije predstavljajo doprinos k premoščanju razlike med
teoretičnim računalništvom in njegovo uporabo v praksi: boljšemu razumevanju in
modeliranju realnih problemov iz gospodarstva, predstavljenih kot NP-težki problemi
v teoriji grafov, kot tudi doprinos optimizacijskim metodam za reševanje omenjenih
problemov.

Naj omenimo še, da so rezultati disertacije objavljeni v naslednjih znanstvenih
člankih:

• M. Djordjevic, Influence of Grafting a Hybrid Searcher Into the Evolutionary
Algorithm, Proceedings of the 17th International Electrotechnical and Computer
Science Conference, Portoroz, Slovenia (2008), 115–118.

• M. Djordjevic, and M. Tuba, and B. Djordjevic, Impact of Grafting a 2-opt
Algorithm Based Local Searcher Into the Genetic Algorithm, Proceedings of
the 9th WSEAS international conference on Applied informatics and commu-
nications, AIC 2009, Moscow, Russia (2009), 485–490.

• M. Djordjevic, and A. Brodnik, Quantitative Analysis of Separate and Com-
bined Performance of Local Searcher and Genetic Algorithm, Book of Abstract
of International Conference on Operations Research, OR 2011, Zurich, Switzer-
land (2011), 130.

• M. Djordjevic, and A. Brodnik, Quantitative Analysis of Separate and Com-
bined Performance of Local Searcher and Genetic Algorithm, Proceedings of
the 33rd International Conference on Information Technology Interfaces, ITI
2011, Dubrovnik, Croatia (2011), 515–520.

• M. Djordjevic, A. Brodnik and M. Grgurovic, The Traveling Visitor Problem
and Koper Algorithm for Solving It, accepted by 25th Conference of European
Chapter on Combinatorial Optimization, ECCO2012, Antalya, Turkey.

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 58

• M. Djordjevic, A. Brodnik and M. Grgurovic, The Traveling Visitor Problem
and Algorithms for Solving It, accepted by 3rd Student Conference on Opera-
tional Research, SCOR 2012, Nottingham, UK.

Bibliography

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, al-
gorithms, and applications. Prentice hall, Upper Saddle River (New Jersey),
1993.

[2] S. Anily and R. Hassin. The swapping problem. Networks, 22(4):419–433,
1992.

[3] D. Applegate, R. Bixby, V. Chvátal, and B. Cook. Finding cuts in the TSP.
Technical report, Center for Discrete Mathematics and Theoretical Computer
Science, Rutgers, 1995.

[4] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. TSP cuts which do not
conform to the template paradigm. In M. Jünger and D. Naddef, editors,
Computational Combinatorial Optimization, pages 261–304. Springer Verlag,
Berlin, 2001.

[5] D. Applegate, R. Bixby, W. Cook, and V. Chvátal. On the solution of traveling
salesman problems. Rheinische Friedrich-Wilhelms-Universitat Bonn, Bonn,
1998.

[6] D. Applegate, W. Cook, and A. Rohe. Chained Lin-Kernighan for large travel-
ing salesman problems. INFORMS Journal on Computing, 15(1):82–92, 2003.

[7] T. Bäck. Evolutionary algorithms in theory and practice. Oxford University
Press, New York, 1996.

[8] M. O. Ball and M. J. Magazine. Sequencing of insertions in printed circuit
board assembly. Operations Research, 36(2):192–201, 1988.

[9] J. C. Bean. Genetic algorithms and random keys for sequencing and optimiza-
tion. ORSA journal on computing, 6(2):154–160, 1994.

[10] J. J. Bentley. Fast algorithms for geometric traveling salesman problems. IN-
FORMS Journal on Computing, 4(4):387, 1992.

[11] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and
M. Sudan. The minimum latency problem. In Proceedings of the twenty-sixth
annual ACM symposium on Theory of computing, pages 163–171, 1994.

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 60

[12] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview
and conceptual comparison. ACM Computing Surveys (CSUR), 35(3):268–308,
2003.

[13] K. D. Boese. Models for iterative global optimization. PhD thesis, University
of California, Los Angeles, 1996.

[14] N. Boland, L. Clarke, and G. Nemhauser. The asymmetric traveling salesman
problem with replenishment arcs. European Journal of Operational Research,
123(2):408–427, 2000.

[15] P. Bosman and D. Thierens. On the modelling of evolutionary algorithms.
In Proceedings of the Eleventh Belgium–Netherlands Conference on Artificial
Intelligence BNAIC, pages 67–74, 1999.

[16] J. Brest and J. Žerovnik. A heuristic for the asymmetric traveling salesman
problem. In The 6th Metaheuristics International Conference, pages 145–150,
2005.

[17] T. N. Bui and B. R. Moon. A new genetic approach for the traveling salesman
problem. In Evolutionary Computation, IEEE World Congress on Computa-
tional Intelligence, Proceedings of the First IEEE Conference on Evolutionary
Computation, pages 7–12, 1994.

[18] G. Carpaneto, M. Dell’Amico, and P. Toth. Exact solution of large-scale,
asymmetric traveling salesman problems. ACM Transactions on Mathematical
Software (TOMS), 21(4):394–409, 1995.

[19] A. E. Carter and C. T. Ragsdale. A new approach to solving the multiple
traveling salesperson problem using genetic algorithms. European journal of
operational research, 175(1):246–257, 2006.

[20] R. Cheng and M. Gen. Resource constrained project scheduling problem using
genetic algorithms. International Journal of Intelligent Automation and Soft
Computing, 3(3):78–286, 1997.

[21] R. Cheng, M. Gen, and Y. Tsujimura. A tutorial survey of job-shop scheduling
problems using genetic algorithms - i. representation. Computers & Industrial
Engineering, 30(4):983–997, 1996.

[22] R. Chiong. Nature-inspired algorithms for optimisation. Springer Verlag,
Berlin, 2009.

[23] V. Chvátal. Linear programming. WH Freeman, New York, 1983.

[24] J. Cirasella, D. Johnson, L. McGeoch, and W. Zhang. The asymmetric travel-
ing salesman problem: Algorithms, instance generators, and tests. In Revised
Papers from the Third International Workshop on Algorithm Engineering and
Experimentation, ALENEX ’01, pages 32–59, 2001.

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 61

[25] A. Coja-Oghlan, S. O. Krumke, and T. Nierhoff. A heuristic for the stacker
crane problem on trees which is almost surely exact. Journal of Algorithms,
61(1):1–19, 2006.

[26] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the third annual ACM symposium on Theory of computing, pages 151–158,
1971.

[27] W. Cook and P. Seymour. Tour merging via branch-decomposition. INFORMS
Journal on Computing, 15(3):233–248, 2003.

[28] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms.
3rd edition. The MIT Press, Cambridge, 2009.

[29] G. A. Croes. A method for solving traveling-salesman problems. Operations
Research, 6(6):791–812, 1958.

[30] G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-
salesman problem. Journal of the Operations Research Society of America,
2(4):393–410, 1954.

[31] G. B. Dantzig and W. Orchard-Hays. The product form for the inverse in
the simplex method. Mathematical Tables and Other Aids to Computation,
8(46):64–67, 1954.

[32] S. Dasgupta, C. H. Papadimitriou, and U. Vazirani. Algorithms. 1st ed.
McGraw-Hill, New York, 2008.

[33] F. Della Croce, R. Tadei, and G. Volta. A genetic algorithm for the job shop
problem. Computers & Operations Research, 22(1):15–24, 1995.

[34] M. Djordjevic. Influence of grafting a hybrid searcher into the evolutionary
algorithm. In Proceedings of the 17th International Electrotechnical and Com-
puter Science Conference, pages 115–118. Slovenian Section IEEE, Ljubljana,
2008.

[35] M. Djordjevic and A. Brodnik. Quantitative analysis of separate and combined
performance of local searcher and genetic algorithm. In Book of Abstracts,
OR 2011, International Conference on Operation Research, page 130. IFOR,
Zurich, 2011.

[36] M. Djordjevic and A. Brodnik. Quantitative analysis of separate and combined
performance of local searcher and genetic algorithm. In Proceedings of the
33rd International Conference on Information Technology Interfaces, ITI 2011,
pages 515–520. SRCE, Zagreb, 2011.

[37] M. Djordjevic, M. Tuba, and B. Djordjevic. Impact of grafting a 2-opt algo-
rithm based local searcher into the genetic algorithm. In Proceedings of the 9th
WSEAS international conference on Applied informatics and communications,
pages 485–490. Stevens Point, WSEAS, 2009.

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 62

[38] M. Dorigo, M. Birattari, and T. Stutzle. Ant colony optimization. IEEE
Computational Intelligence Magazine, 1(4):28–39, 2006.

[39] M. Dorigo and L. M. Gambardella. Ant colony system: a cooperative learning
approach to the traveling salesman problem. Evolutionary Computation, IEEE
Transactions on, 1(1):53–66, 1997.

[40] Z. Drezner. Facility location: a survey of applications and methods. Springer,
Berlin, 1995.

[41] K. Easton, G. Nemhauser, and M. Trick. The traveling tournament problem
description and benchmarks. In Proceedings of the 7th International Conference
on Principles and Practice of Constraint Programming, CP ’01, pages 580–584,
2001.

[42] T. A. El-Mihoub, A. A. Hopgood, L. Nolle, and A. Battersby. Hybrid genetic
algorithms: a review. Engineering Letters, 13(2):124–137, 2006.

[43] H. Emmons and K. Mathur. Lot sizing in a no-wait flow shop. Operations
research letters, 17(4):159–164, 1995.

[44] C. Engels and B. Manthey. Average-case approximation ratio of the 2-opt
algorithm for the tsp. Operations Research Letters, 37(2):83–84, 2009.

[45] T. Fischer and P. Merz. A distributed chained Lin-Kernighan algorithm for
TSP problems. In Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’05), pages 162–172, 2005.

[46] C. Fleurent and J. A. Ferland. Genetic hybrids for the quadratic assignment
problem. American Mathematical Society, 16:173–187, 1993.

[47] M. M. Flood. The traveling-salesman problem. Operations Research, 4(1):61–
75, 1956.

[48] L. J. Fogel. Intelligence through simulated evolution: forty years of evolutionary
programming. John Wiley & Sons, New York, 1999.

[49] B. Freisleben and P. Merz. New genetic local search operators for the travel-
ing salesman problem. In Proceedings of the 4th International Conference on
Parallel Problem Solving from Nature, PPSN IV, pages 890–899, 1996.

[50] P. Gang, I. Iimura, and S. Nakayama. An evolutionary multiple heuristic with
genetic local search for solving TSP. International Journal of Information
Technology, 14(2):1–11, 2008.

[51] A. Garcia, P. Jodrá, and J. Tejel. A note on the traveling repairman problem.
Networks, 40(1):27–31, 2002.

[52] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. WH Freeman, New York, 1979.

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 63

[53] I. Gerace and F. Greco. The travelling salesman problem in symmetric circu-
lant matrices with two stripes. Mathematical Structures in Computer Science,
18(01):165–175, 2008.

[54] F. Glover. Ejection chains, reference structures and alternating path methods
for traveling salesman problems. Discrete Applied Mathematics, 65(1-3):223–
253, 1996.

[55] M. X. Goemans and D. J. Bertsimas. Probabilistic analysis of the Held and
Karp lower bound for the Euclidean traveling salesman problem. Mathematics
of operations research, 16(1):72–89, 1991.

[56] D. E. Goldberg. Genetic algorithms in search, optimization, and machine learn-
ing. Addison-Wesley, Reading, 1989.

[57] L. Gouveia and S. Vob. A classification of formulations for the (time-
dependent) traveling salesman problem. European Journal of Operational Re-
search, 83(1):69–82, 1995.

[58] A. Gupta, V. Nagarajan, and R. Ravi. Approximation algorithms for optimal
decision trees and adaptive tsp problems. In Proceedings of the 37th Inter-
national Colloquium Conference on Automata, languages and programming,
ICALP’10, pages 690–701, 2010.

[59] G. Gutin, H. Jakubowicz, S. Ronen, and A. Zverovitch. Seismic vessel problem.
Communications in Dependability and Quality Management, 8(1):13–20, 2005.

[60] G. Gutin and D. Karapetyan. A memetic algorithm for the generalized traveling
salesman problem. Natural Computing, 9(1):47–60, 2010.

[61] G. Gutin and A. P. Punnen. The traveling salesman problem and its variations.
Kluwer Academic Publishers, Dordrecht, 2002.

[62] G. Gutin, A. Yeo, and A. Zverovitch. Exponential neighborhoods and domina-
tion analysis for the tsp. In D. Du, P. Pardalos, G. Gutin, and A. Punnen, edi-
tors, The traveling salesman problem and its variations, pages 223–256. Kluwer
Academic Publishers, Dordrecht, 2004.

[63] N. Guttmann-Beck, R. Hassin, S. Khuller, and B. Raghavachari. Approx-
imation algorithms with bounded performance guarantees for the clustered
traveling salesman problem. Algorithmica, 28(4):422–437, 2000.

[64] M. Hahsler and K. Hornik. TSP–Infrastructure for the traveling salesperson
problem. Journal of Statistical Software, 23(2):1–21, 2007.

[65] W. E. Hart. Adaptive global optimization with local search. PhD thesis, Uni-
versity of California, San Diego, 1994.

[66] L. He and N. Mort. Hybrid genetic algorithms for telecommunications network
back-up routeing. BT Technology Journal, 18(4):42–50, 2000.

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 64

[67] M. Held and R.M. Karp. The traveling-salesman problem and minimum span-
ning trees: Part II. Mathematical Programming, 1(1):6–25, 1971.

[68] K. Helsgaun. An effective implementation of the Lin-Kernighan traveling sales-
man heuristic. European Journal of Operational Research, 126(1):106–130,
2000.

[69] J. H. Holland. Adaptation in natural and artificial systems. The University of
Michigan Press, Ann Arbor, 1975.

[70] H. Hoos and T. Stützle. Stochastic Local Search: Foundations & Applications.
Morgan Kaufmann Publishers, San Francisco, 2004.

[71] L. J. Hubert and F. B. Baker. Applications of combinatorial programming to
data analysis: the traveling salesman and related problems. Psychometrika,
43(1):81–91, 1978.

[72] D. Johnson and L. McGeoch. Experimental analysis of heuristics for the STSP.
In The traveling salesman problem and its variations, pages 369–443. Kluwer
Academic Publishers, Dordrecht, 2004.

[73] D. S. Johnson and L. A. McGeoch. The traveling salesman problem: a case
study in local optimization. In Local search in combinatorial optimization,
pages 215–310. J. Wiley, Chichester, 1997.

[74] D. S. Johnson and C. H. Papadimitriou. Computational complexity and the
traveling salesman problem. Massachusetts Institute of Technology, Cambridge,
1981.

[75] S. Jung and B. R. Moon. The natural crossover for the 2d euclidean tsp. In
Proceedings of Genetic and Evolutionary Computation Conference (GECCO),
pages 1003–1010. Morgan Kaufmann, San Mateo, 2000.

[76] M. Junger, G. Reinelt, and G. Rinaldi. The traveling salesman problem. Hand-
books in Operations Research and Management Science, 7:225–330, 1995.

[77] D. Karapetyan and G. Gutin. Lin-Kernighan heuristic adaptations for the gen-
eralized traveling salesman problem. European journal of operational research,
208(3):221–232, 2011.

[78] R. M. Karp and C. H. Papadimitriou. On linear characterizations of com-
binatorial optimization problems. SIAM Journal on Computing, 11:610–620,
1982.

[79] K. Katayama and H. Narihisa. Iterated local search approach using ge-
netic transformation to the traveling salesman problem. In Proceedings of
GECCO’99, pages 321–328, 1999.

[80] K. Katayama, H. Sakamoto, and H. Narihisa. The efficiency of hybrid muta-
tion genetic algorithm for the travelling salesman problem. Mathematical and
Computer Modelling, 31(10-12):197–203, 2000.

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 65

[81] R. Keuthen. Heuristic Approaches for Routing Optimisation. PhD thesis,
University of Nottingham, Nottingham, 2003.

[82] S. Kirkpatrick. Optimization by simulated annealing: quantitative studies.
Journal of Statistical Physics, 34(5):975–986, 1984.

[83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671, 1983.

[84] J. R. Koza. Genetic programming: On the programming of computers by natural
selection. MIT Press, Cambridge, 1992.

[85] N. Krasnogor. Studies on the theory and design space of memetic algorithms.
PhD thesis, University of the West of England, Bristol, 2002.

[86] N. Krasnogor, P. Moscato, and M. G. Norman. A new hybrid heuristic for large
geometric traveling salesman problems based on the delaunay triangulation. In
Anais do XXVII Simposio Brasileiro de Pesquisa Operacional, Vitoria, Brazil,
SOBRAPO, pages 6–8, 1995.

[87] N. Krasnogor and J. Smith. A tutorial for competent memetic algorithms:
model, taxonomy, and design issues. Evolutionary Computation, 9(5):474–488,
2005.

[88] K. W. C. Ku and M. W. Mak. Empirical analysis of the factors that affect the
baldwin effect. Lecture notes in computer science, pages 481–490, 1998.

[89] A. H. Land and A. G. Doig. An automatic method of solving discrete pro-
gramming problems. Econometrica, 28(3):497–520, 1960.

[90] L. T. Leng. Guided genetic algorithm. Relation, 10(148):103–113, 2008.

[91] J. K. Lenstra and A. H. G. R. Kan. Some simple applications of the travelling
salesman problem. Operational Research Quarterly, 26(4):717–733, 1975.

[92] C. F. Liaw. A hybrid genetic algorithm for the open shop scheduling problem.
European Journal of Operational Research, 124(1):28–42, 2000.

[93] G. F. Lima, A. S. Martinez, and O. Kinouchi. Deterministic walks in random
media. Physical Review Letters, 87(1):10603, 2001.

[94] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling
salesman problem. Operations research, 21(2):498–516, 1973.

[95] S. B. Liu, K. M. Ng, and H. L. Ong. A new heuristic algorithm for the classical
symmetric traveling salesman problem. International Journal of Mathematical
Science, 37(4):234–238, 2007.

[96] V. Mak and N. Boland. Heuristic approaches to the asymmetric travelling
salesman problem with replenishment arcs. International Transactions in Op-
erational Research, 7(4-5):431–447, 2000.

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 66

[97] R. Matai and S. Singh. Traveling Salesman Problem: an overview of applica-
tions, formulations and solution approaches. Omega, 34(3):209–219, 2006.

[98] K. Menger. Das botenproblem. Ergebnisse eines Mathematischen Kolloquiums,
2:11–12, 1932.

[99] M. Mernik, V. Žumer, and M. Črepinšek. A metaevolutionary approach for the
traveling salesman problem. In Information Technology Interfaces, ITI 2000,
Proceedings of the 22nd International Conference, pages 357–362, 2000.

[100] P. Merz. Memetic algorithms for combinatorial optimization problems: Fitness
landscapes and effective search strategies. PhD thesis, University of Siegen,
Siegen, 2000.

[101] P. Merz and B. Freisleben. Genetic local search for the TSP: new results. In
Proceedings of 1997 IEEE International Conference on Evolutionary Compu-
tation (ICEC’97), pages 159–164, 1997.

[102] P. Merz and B. Freisleben. Memetic algorithms for the traveling salesman
problem. Complex Systems, 13(4):297–346, 2001.

[103] G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew,
and A. J. Olson. Automated docking using a lamarckian genetic algorithm and
an empirical binding free energy function. Journal of computational chemistry,
19(14):1639–1662, 1998.

[104] R. E. Mowe and B. A. Julstrom. A web-based evolutionary algorithm demon-
stration using the traveling salesman problem. In The 34th Annual Midwest
Instruction and Computing Symposium, pages 1–10, 2001.

[105] Y. Nagata. Edge assembly crossoveria high-power genetic algorithm for the
traveling salesman problem. In Proceedings of the 7th International Confer-
ence on Genetic Algorithms, page 450. Morgan Kaufmann Publishers, San
Francisco, 1997.

[106] H. D. Nguyen, I. Yoshihara, K. Yamamori, and M. Yasunaga. Greedy genetic
algorithms for symmetric and asymmetric tsps. Joho Shori Gakkai Shinpojiumu
Ronbunshu, 2001(12):67–74, 2001.

[107] H. D. Nguyen, I. Yoshihara, K. Yamamori, and M. Yasunaga. Implementation
of an effective hybrid GA for large-scale traveling salesman problems. Systems,
Manand Cybernetics, 37(1):92–99, 2007.

[108] C. E. Noon and J. C. Bean. An efficient transformation of the generalized
traveling salesman problem. In Technical report. University of Michigan, Ann
Arbor, 1989.

[109] A. J. Orman and H. P. Williams. A survey of different integer programming
formulations of the travelling salesman problem. In Optimisation, Econometric
and Financial Analysis, pages 91–104. Springer, Berlin, 2007.

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 67

[110] E. Ozcan and M. Erenturk. A brief review of memetic algorithms for solving
Euclidean 2D traveling salesrep problem. In Proceedings of the 13th Turkish
Symposium on Artificial Intelligence and Neural Networks, pages 99–108, 2004.

[111] M. Padberg and M. Grötschel. Polyhedral computations. In The Traveling
Salesman Problem, pages 307–360. John Wiley & Sons, Chichester, 1985.

[112] M. Padberg and G. Rinaldi. Optimization of a 532-city symmetric traveling
salesman problem by branch and cut. Operations Research Letters, 6(1):1–7,
1987.

[113] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution
of large-scale symmetric traveling salesman problems. SIAM review, 33(1):60–
100, 1991.

[114] S. S. Ray, S. Bandyopadhyay, and S. K. Pal. Genetic operators for combinato-
rial optimization in TSP and microarray gene ordering. Applied Intelligence,
26(3):183–195, 2007.

[115] I. Rechenberg. Evolution strategy. In Computational Intelligence: imitating
life, pages 147–159. IEEE, New York, 1994.

[116] C. R. Reeves. A genetic algorithm for flowshop sequencing. Computers &
Operations Research, 22(1):5–13, 1995.

[117] C. Rego. Relaxed tours and path ejections for the traveling salesman problem.
European Journal of Operational Research, 106(2-3):522–538, 1998.

[118] C. Rego and F. Glover. Local search and metaheuristics. In The traveling sales-
man problem and its variations, pages 309–368. Kluwer Academic Publishers,
Dordrecht, 2004.

[119] G. Reinelt. Tsplib-a traveling salesman problem library. ORSA Journal on
Computing, 3(4):376–384, 1991.

[120] G. Reinelt. The traveling salesman: computational solutions for TSP applica-
tions. Springer-Verlag, Berlin, 1994.

[121] A. Schrijver. On the history of combinatorial optimization (till 1960). Hand-
books in operations research and management science, 12:1–68, 2005.

[122] H. Sengoku and I. Yoshihara. A fast TSP solver using GA on Java. In 3rd
International Symposium on Artificial Life and Robotics (AROB III’98), 1998.

[123] W. Spears, K. De Jong, T. Bäck, and D. Fogel. An overview of evolution-
ary computation. In Machine Learning: ECML-93, pages 442–459. Springer,
Heidelberg, 1993.

[124] K. Steiglitz and P. Weiner. Some improved algorithms for computer solution
of the traveling salesman problem. In Proceedings of 6th Annual Allerton Con-
ference on Circuit and System Theory, pages 814–821. University of Illinois,
Urbana, 1968.

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 68

[125] T. Stützle and M. Dorigo. Aco algorithms for the traveling salesman problem.
Evolutionary Algorithms in Engineering and Computer Science, pages 163–183,
1999.

[126] A. Uğur, S. Korukoğlu, A. Çalışkan, M. Cinsdikici, and A. Alp. Genetic algo-
rithm based solution for TSP on a sphere. Mathematical and Computational
Applications, 14(3):219–228, 2009.

[127] N. Ulder, E. Aarts, H. J. Bandelt, P. van Laarhoven, and E. Pesch. Genetic
local search algorithms for the traveling salesman problem. In Parallel problem
solving from nature, pages 109–116. Springer Verlag, Berlin, 1991.

[128] R. Vanderbei. Linear programming: foundations and extensions. Journal of
the Operational Research Society, 49(1):93–98, 1998.

[129] M. Vazquez and L. D. Whitley. A hybrid genetic algorithm for the quadratic
assignment problem. In Proceedings of Genetic and Evolutionary Computation
Conference (GECCO), pages 135–142. Morgan Kaufmann, San Mateo, 2000.

[130] M. B. Wall. A Genetic Algorithm for Resource-Constrained Scheduling. PhD
thesis, Massachusetts Institute of Technology, Massachusetts, 1996.

[131] S. Wang, B. Wang, and X. Li. Grafted genetic algorithm and its applica-
tion. In 7th International Conference on Computer-Aided Industrial Design
and Conceptual Design, CAIDCD’06, pages 1–4, 2007.

[132] C. M. White and G. G. Yen. A hybrid evolutionary algorithm for traveling
salesman problem. Evolutionary Computation, 2(1):1473–1478, 2004.

[133] M. Yamamura, T. Ono, and S. Kobayashi. Character-preserving genetic algo-
rithms for traveling salesman problem. Journal-Japanese Society For Artificial
Intelligence, 7:1049–1049, 1992.

[134] M. Zachariasen and M. Dam. Tabu search on the geometric traveling salesman
problem. In Meta-Heuristics: Theory and Applications, volume 36, pages 571–
587. Kluwer Academic Publishers, Boston, 1996.

[135] F. Zhao, J. Sun, S. Li, and W. Liu. A hybrid genetic algorithm for the trav-
eling salesman problem with pickup and delivery. International Journal of
Automation and Computing, 6(1):97–102, 2009.

[136] G. Zhao, W. Luo, H. Nie, and C. Li. A genetic algorithm balancing exploration
and exploitation for the travelling salesman problem. In 4th International
Conference on Natural Computation, pages 505–509, 2008.

Djordjevic M. Grafted Genetic Algorithm and the Traveling Visitor Problem
University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, 2012 69

Index

All-Pairs Shortest Paths, 14
Arc Routing Problems, 11

mixed windy rural postman problem,
11

arcs, 7

branch-and-cut, 29

closed walk, 6
computational complexity, 8
Concorde, 29
cutting plane method, 28
cycle, 6

degree, 6
Distance Preserving Crossover, 26

Edge Map Crossover, 26

Frequency Assignment Problem, 12

graph, 6
complete, 6
directed, 7
Eulerian, 6
Hamiltonian, 6
weighted, 7

Hamiltonian Cycle, 7
Hamiltonian Cycle Problem, 8
Held-Karp lower bound, 16
Heuristics, 15

Lin-Kernighan, 21
Local Search Algorithms, 18
2-opt, 20
k-opt, 19

Nature Inspired Algorithms, 21
Ant Colony Optimization, 23
Evolutionary Algorithms, 23
Genetic Algorithms, 25

Genetic Local Searchers, 27
Hybrid Genetic Algorithms, 27
Memetic Algorithms, 27
Simulated Annealing, 22

Tour Construction Algorithms, 16
Insertion, 18
Nearest Neighbour, 17

Machine Scheduling Problems, 10
Gilmore-Gomory, 10
no wait flow shop, 10

non-deterministic algorithm, 9
NP-complete, 9
NP-hard, 9

path, 6

The Floyd-Warshall Algorithm, 14
Traveling Salesman Problem, 5

asymmetric TSP, 7
Black and White TSP, 12
Clustered TSP, 13
Euclidean TSP, 7
Generalized TSP, 13
symmetric TSP, 7
The bottleneck TSP, 13
The delivery man problem, 12
The MAX TSP, 13
The time dependent TSP, 12
Traveling Tourist Problem, 13
TSP with multiple visits, 14

Traveling Visitor Problem, 1
TSPlib, 15

walk, 6

Declaration

I declare that this PhD Thesis does not contain any materials previously pub-
lished or written by another person except where due reference is made in the text.

Milan Djordjevic

	List of Figures
	List of Algorithms
	List of Tables
	Introduction
	Traveling Visitor Problem
	Traveling Salesman Problem
	Research Objectives

	Background
	Traveling Salesman Problem
	Graph representation
	Computational complexity
	TSP Applications
	More Variations of the TSP
	All-Pairs Shortest Paths

	TSP Heuristics
	Tour Quality
	Tour Construction Algorithms
	Local Search Algorithms
	Nature Inspired Algorithms
	Finding exact solutions for the TSP

	Grafted Genetic Algorithm for Traveling Salesman Problem
	Introduction
	Grafted GA for the TSP
	Experiment
	Results
	Conclusions

	Traveling Visitor Problem
	Introduction
	Traveling Visitor Problem
	Algorithms for solving TVP
	Adapted Floyd-Warshall algorithm

	Experiment
	Results
	Conclusions

	Conclusion
	Povzetek v slovenskem jeziku
	Uvod
	Vsebina disertacije
	Raziskava
	Cepljeni Genetski Algoritmi
	Problem Potujocega Obiskovalca

	Metodologija
	Doprinos k znanosti

	Bibliography
	Index

