The Traveling Visitor Problem and Algorithms
for Solving It

Milan Djordjevic, Andrej Brodnik and Marko Grgurovic

Abstract We consider the problem when visitor wants to visit all ietting sites
in a city exactly once and to come back to the hotel. Sinceyiitors use streets,
walking trails and pedestrian zones, the goal is to mininttieevisitor’s traveling.
A new problem the Traveling Visitor Problem (TVP) is then #ganto the Traveling
Salesman Problem (TSP) with a difference that the traveiisitprs, during its visit
of sites, can not fly over buildings in the city, instead \dsithave to go around these
obstacles. That means that all "air” distances, like thosa TSP, are impossible
in this case. The tested benchmarks are combined from the¢énstances made
using tourist maps of cities of Koper, Belgrade and Venicé &vo instances of
modified cases from TSPLIB. We compared two methods for sglthie Traveling
Visitor Problem. In all tested cases the Koper Algorithmméfigantly outperforms
the Naive Algorithm for solving the TVP.

1 Introduction

In the Traveling Salesman Problem (TSP) a{§8t C,, ...Cy } of cities is considered
and for each pai(C;,C;) wherei # j, a distancal(C;,C;) is given. The goal is to
find a permutationt of the cities that minimizes the quantity

N-1
Zl d(Criy,Criz1)) +d(Criny>Crr(r))- 1)
i=

This quantity is referred to as the tour length since it islémgth of the tour a
salesman would make when visiting the cities in the ordecifipd by the permu-

Milan Djordjevic
UP DIST, Koper, Slovenia e-mail: milan.djordjevic@stutepr.si

Andrej Brodnik
UP DIST, Koper, Slovenia e-mail: andrej.brodnik@upr.si

Marko Grgurovi¢
UP DIST, Koper, Slovenia e-mail: marko.grgurovic@studgmtsi

2 Milan Djordjevic, Andrej Brodnik and Marko Grgurovic

tation T, returning at the end to the initial city. We will concengat this paper on
the symmetric TSP (STSP) in which the distances satl$@y,Cj) = d(C;,G) for
1<i,) <N. While the TSP is known to bP-hard [12] even under substantial re-
strictions. The case with symmetric distances is well nedesd and there are many
algorithms which perform well even on large cases [1, 3] hia literature [10, 11]
the Traveling Salesman Problem is usually represented amsidered as a graph
theoretical problem.

An instance of the STSP can be seen as a complete @apkV,E) where the
set of vertice¥ is given by the cities and edges between each city in the guéthh
corresponding edge weight$C;,C;). The STSP then translates to the problem of
finding a Hamiltonian Tour of minimal length in the gra@h

Applications of the TSP and its variations go way beyond th&e planning
problem of a traveling salesman and span over several aféa®wledge includ-
ing mathematics, computer science, operations reseagnbtigs, engineering, and
electronics. In addition, there are many different vapiasi of TSP which are de-
scribed and explored in the literature and also variaticgrivdd from everyday
life. Some of them are: Machine Scheduling Problems [4,TB§ time dependent
TSP [9], The delivery man problem which is also known astie mum latency
problemand thetraveling repairman problem, for details on this problems, we refer
to [5, 8] respectively.

Traveling Tourist Problem [13] is a problem in which a toumngshes to see
all monuments (nodes) in a city, and so must visit each montiorea neighbour
thereof (it is assumed that a monument is visible from anytheighbours the
edges therefore represent lines of sight). The resulting wal therefore visit a
subset of all nodes in the graph. The Traveling Tourist Rnmbshares a similar
name with our problem but is otherwise a very different peotnl

The STSP can be solved using the Grafted Genetic Algoritld&A) as was
shown in [7]. The currently most efficient implementationtbé branch-and-cut
method which was introduced by Padberg and Rinaldi [14]dbrisg the symmet-
ric case of Traveling Salesman ProblenC@corde[2]. Concorde’s TSP solver has
been used to obtain the optimal solutions to the full set & T$PLIB instances,
the largest having 85,900 cities. Finally, in a graplwe can find besides short-
est closed walk also the shortest path between any pair t€egr This problem
is in the literature known as all-pairs shortest path pnob]é]. It aims to compute
the shortest path from each vertexo every other vertex. The Floyd-Warshall
algorithm [6] is an efficient algorithm to find all-pairs shest paths on a gragh.

2 Traveling Visitor Problem

Visitors have arrived in a hotel in some new town, with a degirvisit all interesting

sites in a city exactly once and to come back to the hoteltdfisin generally use
their feet for traveling through the city, for which they u&eeets, walking trails and
pedestrian zones. The goal is to minimize the visitors tiage

The Traveling Visitor Problem and Algorithms for Solving It 3

The Traveling Visitor Problem is a version of the Travelingif€dman Problem
with a difference that the traveling visitor, during itsivisf sites, can not fly over the
buildings in the city, instead visitors must go around thasstacles. This difference
is demonstrate in the Figure 1. This means that the "air'adists, as we know
them in the TSP, are in this case impossible (direct edge franyj in Figure 1).
Visitors use the walking paths and pedestrian zones ofiarlangth. These limits
determine the weight of edges connecting the vertices igtagh.

The Traveling Visitor Problem is stated as: given a spamsenected, weighted
graphG = (V,E,c), with a set of vertice¥ = SUX andSNX = 0, Sbelongs to
interesting sites in the city (verticéand | in Figure 1),X belongs to crossroads in
the city (verticek andmin Figure 1), a set of edgds, and a cost of traveling.
The goal is to find the shortest closed walk through all vegiitomS, according to
cin graphG, although we may travel through vertices frofn

The concepts we summarised above can be modified easilyadttaklirections
of the edges into account. The asymmetric traveling vigitoblem (ATVP) is then
similar to the symmetric TVP above, i. e. it is the problem ofifng a closed walk
of minimal length in a sparse weighted graph. Huelidean TVP, or planar TVP,
is the TVP with the distance being the ordind&yclidean distance. The Euclidean
TVP is then a particular case of the metric TVP, since disaric a plane obey the
Euclidian triangle inequality.

This problem, by the knowledge of the authors, has no reéa®im publications
due date of writing it.

3 Algorithmsfor solving TVP

First thinking about possible solution for Traveling Vigitproblem is motivated by
the intuitive thinking of a tourist when the concerned gepassession of a tourist
map. That is: visit the first place from the map, then secore] trennt", until all

3
=

J i

Fig. 1 TSP and TVP, Two rectangles represent buildings (obstaildbe city. Red nodes repre-
sent interesting sites in the city (vertices from Sgtblack nodes represent crossroads in the city
(vertices from seK), the red line represent the euclidean shortest connebgomeen two inter-
esting sites (this is the case in TSP), black lines reprasentonnection between two interesting
sites, going through two crossroads (this is the case in TVP)

4 Milan Djordjevic, Andrej Brodnik and Marko Grgurovic

sites from the map are visited and then come back to thergjagitie. The results of
this method depend directly on the order in which the intergsites are listed on
the map. Furthermore, this intuitive method does not carday science value.

First proposed method for solving the Traveling Visitor e is the Naive
based algorithm, shown in Algorithm 1. In the first line of pdecode we can dis-
tinguish next parameter§ belongs to interesting sites in the cify, belongs to
crossroads in the city, a set of edgesandW represents the distance matrix of
the graphG, (SUX x SUX). In the first step of an algorithm the Traveling Visitor
Problem is solved as an instance of Traveling Salesman &holh next, from the
distance matrixV we produce a distance mati@x(Sx S), which is the solution of
all-pairs shortest path problem (APSP). Finally, in thepldddock (lines 6 through
8) the solution for TVP is given by applaying the shorteshpdtomZ into T.

Algorithm 1 Naive Algorithm
. procedure NAIVE(S,X,E,W)
T TSPW)

: Z+SxS

1

2

3

4: Z + APSP(SUX,E,W)
5: cost«+ 0

6: for all (i,j) €T :do
7: cost«—cost+Z7;j

8: end for

9: end procedure

The second proposed method for solving the Traveling \figtimblem is the
Koper Algorithm, shown in Algorithm 2. The first line of pseambde contains the
same parameters as naive algorithm. In the first step welfmdlt pairs shortest
paths in our graplt. As an input a distance matri®/ is used and as the output
a distance matrix is obtained. In the next step we solve the Traveling Salesman
Problem on the distance matr& Furthermore, we get the solutidn which is a
solution for Traveling Visitor Problem.

The difference in this two proposed methods is whether wedolve the TSP
then APSP, it is the case in naive algorithm, or we first sélRSP and then TSP
which is the case in koper algorithm.

Algorithm 2 Koper Algorithm
1: procedure KOPERS,X,E,W)
2 Z+ SxS
3 Z+ APSP(SUX,E,W)

4
5:

T+ TSP(2Z)
end procedure

The Traveling Visitor Problem and Algorithms for Solving It 5

3.1 Adapted Floyd—Warshall algorithm

The problem stated in the previous section is of finding thetsist paths between
each pair of vertices andv, whereu,v € S, in the graphG. This can be cast as
a run-of-the-mill all-pairs shortest path problem. Indeesing the Floyd-Warshall
algorithm, we can obtain a solution in tin@(|V|3). However, the nature of our
problem is somewhat more restrictive: we are only inteckstehe shortest paths
betweenS x S, yet we would still like the paths to go through vertices fréme
setX if they reduce the overall path length. In contrast, the &dyarshall algo-
rithm computes a shortest paths betwser V. To this end, we propose a simple
modification which reduces the running time, albeit not gstotically. The Floyd-
Warshall algorithm is shown in Algorithm 3, whe¥é is the distance matrix of the
graphG.

Algorithm 3 Floyd-Warshall

1: procedure FLOYD-WARSHALL(V,W)

2 for allkeV do

3 for allieV do

4: for all j eV do

5: W := min(Wj, Wi +W;)
6: end for

7 end for

8 end for

9: end procedure

Let x = |X| ands = |§|. Using these quantities, the number of iterations of the
Floyd-Warshall algorithm can be written és+x)° = s% + x> 4 3s?x + 3x%s. We
offer a different approach, shown in Algorithm 4.

The number of iterations of algorithm 4 can be plainly seeadoal:s® + x3 +
$x+ x?s. The best gain, when compared to Floyd-Warshall, is wherx which
amounts to exactly one half of all iterations of the Floydrg¥ell algorithm. Al-
though it takes fewer iterations, it also computes fewertsisb paths, since we are
only interested ir6x S. We will prove the correctness of algorithm 4 by appealing
to the graph shown in Fig. 3.1.

In order to examine how algorithm 4 works, it is helpful tovadize sets of ver-
tices, as shown in Fig. 3.1. It should be noted that we will enage of a sparsely
connected graph, which simplifies the analysis. The resg@saot change for com-
plete graphs, since the algorithm itself makes no such gssoms.

The first call to Floyd-Warshall (line 2) in algorithm 4 findsetall-pairs short-
est paths between the verticesXn but using only vertices fronX on the paths
themselves. Note that there are two such sets shown in Big.&X’ andX”, with
no direct edges between them. Thus, we can only find the sh@d¢hs inside the
individual sets. Once the paths are found, we can find our vaag &iny vertex irX
to any vertex inX if a path that does not take us through verticeS éxists.

6 Milan Djordjevic, Andrej Brodnik and Marko Grgurovic

Algorithm 4 Adapted Floyd-Warshall Algorithm

1: procedure ADAPTED(S,X,W)

2 FLOYD-WARSHALL(X,W)

3 for all ke X do

4: for all i € X do

5: for all j € Sdo

6: W i= min(Wj, Wi +Wk;)
7: end for

8: end for

9: end for

10: for all ke X do

11: for ali e Sdo

12: for all j € Sdo

13: Wj = min(W,,-,W,k Jr\/\ﬁ(j)
14: end for
15: end for
16: end for

17: FLOYD-WARSHALL(SW)
18: end procedure

Fig. 2 Each node in the graph represents an arbitrary amount a¢egifrom a single set that are
arbitrarily interconnected. The edges represent (arbitrmmany) connections to other such sets.
Note, thatS, S’ ¢ SandX’, X" c X.

The first loop block (lines 3 through 9) of Algorithm 4 finds eyshortest path
starting inX and ending ir5, by going through vertices iX only. Every vertex in
X knows the path to every other vertexxnas long as the path does not go through
vertices inS. At this point there must exist a pair of verticess X, v € Swhere
W,y < o 1. Thus, when the first loop block finishes, every vertexiknows the
shortest paths throughito some vertices is. In Fig. 3.1 this means that the vertices
in X’ know the shortest paths throudfh that end inS or S’. The same is true for
vertices inX”.

Finally, the second loop block (lines 10 through 16) of thgoathm finds every
shortest path starting in some vertex§igoing through some vertex ¥and ending
in some vertex inS. The only vertices irS that have paths to vertices X are
those that have edges that connect them. However, thee®itiX that they are
connected to, know the shortest paths throginding in some vertices i Thus,
the algorithm connects the s&®sandS’ via the shortest paths througfh andX”.

L |f there were no such pair, a path frdiio Sgoing throughX would not exist.

The Traveling Visitor Problem and Algorithms for Solving It 7

At the end (line 17), we run the Floyd-Warshall algorithm &rSSince the sets
S andS’ have been connected via shortest paths throGgie obtain the APSP
solution forSx Swhereby the paths can go through

4 Experiment

For testing our strategy and comparing it to other methodssee the real instances
of the Traveling Visitor Problem, which were made from ofiiciourist maps of
cities of Koper, Belgrade and Venice. In the instance of Belg two different cases
were made and they differed in the size of the problem, ieenttmber of vertices in
the graph. From the publicly available library, TSPLIB, afigple benchmarks for
the TSP and related problems, two instances of the symntsdxieling salesman
problem were taken, modified and tested.

These two instances were modified in such a way that a new @aphs made
satisfying the conditions of a sparse, connected, weightapgh. Furthermore we
splitV into a set of vertice$ and set of vertice¥X, such thaiS = |X| = |V|/2.
A vertex degree 5 is arbitrarily assigned, inspired by theecaf real instances,
and means that from every vertex frafthere is exactly 5 edges going to the other
vertex fromV. The 5 edges per vertex were chosen randomly, accordingtidcarm
probability distribution.

Altogether 5 instances were tried out, with different siagséch range from 120
to 1002 vertices per instance. We compared two methods feingahe traveling
visitor problem. The first method is the naive algorithmgwh in Algorithm 1. The
second tested method is the koper algorithm, shown in Adgor2. For solving the
TSP, as one step in both algorithms, we used the Concordeithlgg presented in
Section 1. Furthermore, for solving the APSP, as a part df hlgforithms, we used
the Adapted Floyd Warshall algorithm, which was presented in Section 3.1.

5 Results

The results of the experiment are summarized in Table 1.iRatances were tried
out, with different sizes, ranging from 120 to 1002 vertipesinstance. The hames
of these cases are in the first column. The second columnineritee size of the
problem, i.e. the number of vertices. The third column inlédbcorresponds to the
number of vertices in s&&and in the top three instances the number of interesting
sites from tourist maps. The fourth column contains namekefwo tested meth-
ods. The fifth column corresponds to the length of the toutlie cost of a solution
which was obtained in the experiment. The column is titledrf@ost and in all six
cases the shortest tours are obtained by Koper Algorithmar&sults for Koper Al-
gorithm are coloured in red. The last column correspondsdalifference in tested
methods displayed in percentages. The first tested meti@daive algorithm, per-

8 Milan Djordjevic, Andrej Brodnik and Marko Grgurovic

formed poorly in comparison to the koper algorithm. The gyadliffers from 6.52%
in the case of Belgrade163 to 354.46% in the case of prl0@&ios. Although the
algorithms are similar, (the difference is whether we fidvs the TSP then APSP,
it is the case in naive algorithm, or we first solve APSP arth thSP which is the
case in koper algorithm) the difference in provided sohsitetween two tested
methods is significant.

Name (V) (S) Methods Tour Cost Difference
" - -
Koper 120 55 Naive Algon.thm 4738 17.22%
Koper Algorithm 4042 0.00%
163 53 Naive Algorithm 100389 6.52%
Koper Algorithm 94246 0.00%
Belgrade Naive Algorith 122119 8.77%
550 90 aive Algorithm T7%

Koper Algorithm 112275 0.00%
Venice 210 72 Naive Algorithm 26648 24.24%
Koper Algorithm 21448 0.00%
Naive Algorithm 11818732 354.46%
Koper Algorithm 2600585 0.00%
Naive Algorithm 921499 249.08%
Koper Algorithm 263983 0.00%

Table 1 Two techniques for solving the Traveling Visitor Problem

pri002 1002 501

lin318 318 159

6 Conclusions

The goal of this paper was to describe a new problem from gtiagbry, named
the Traveling Visitor Problem (TVP). Although the new pref is similar to the
well known Traveling Salesman Problem, when we try to solweith the Naive
Algorithm we get solutions far from optimal. The minimum teslutions for the
Traveling Visitor Problem instances tested in the papepaogided by Koper Al-
gorithm. The tested benchmarks are combined from threénstahces made using
tourist maps of cities of Koper, Belgrade and Venice and twvaances of modified
cases from TSPLIB. In all tested cases the Koper Algorithgnificantly outper-
forms the Naive Algorithm for solving the Traveling VisitBroblem.

The Traveling Visitor Problem and Algorithms for Solving It 9

References

1.

2.

3.

10.

11.

12.

13.

14.

D. Applegate, R. Bixby, V. Chvatal, and B. Cook. Findingscin the TSP. Technical report,
Center for Discrete Mathematics and Theoretical Computarse, 1995.

D. Applegate, R. Bixby, V. Chvatal, and W. Cook. TSP cutsch do not conform to the
template paradigm. I€@omputational Combinatorial Optimization, pages 261-304, 2001.

D. Applegate, R. Bixby, W. Cook, and V. ChvataDn the solution of traveling salesman
problems. Rheinische Friedrich-Wilhelms-Universitat Bonn, 1998.

M.O. Ball and M.J. Magazine. Sequencing of insertionsrintpd circuit board assembly.
Operations Research, pages 192-201, 1988.

A. Blum, P. Chalasani, D. Coppersmith, B. PulleyblankRBghavan, and M. Sudan. The
minimum latency problem. IfProceedings of the twenty-sixth annual ACM symposium on
Theory of computing, pages 163-171. ACM, 1994.

T. Cormen, C. Leiserson, R. Rivest, and C. Sténtroduction to Algorithms, Third Edition.
The MIT Press, 3rd edition, 2009.

M. Djordjevic and A. Brodnik. Quantitative Analysis of @@ate and Combined Performance
of Local Searcher and Genetic Algorithm. Pnoceedings of the International Conference on
Operation Research-OR2011, pages 130-132. IFOR, ETH Zurich, 2011.

A. Garcia, P. Jodra, and J. Tejel. A note on the travelemairman problem. Networks,
40(1):27-31, 2002.

L. Gouveia et al. A classification of formulations for thiene-dependent) traveling salesman
problem. European Journal of Operational Research, 83(1):69—-82, 1995.

G. Gutin and A.P. PunneiThe traveling salesman problem and its variations. Kluwer Aca-
demic Pub, 2002.

D.S. Johnson and L.A. McGeoch. The traveling salesmahlgm: A case study in local
optimization. InLocal search in combinatorial optimization, pages 215-310. 1997.

D.S. Johnson and C.H. Papadimitriéomputational complexity and the traveling salesman
problem. Massachusetts Institute of Technology, 1981.

G.F. Lima, A.S. Martinez, and O. Kinouchi. Determirgstialks in random mediaPhysical
Review Letters, 87(1):10603, 2001.

M. Padberg and G. Rinaldi. A branch-and-cut algorithmtf@ resolution of large-scale
symmetric traveling salesman problen®AM review, 33(1):60-100, 1991.

