
Performance Analysis of Partial Use of Local

Optimisation Operator on Genetic Algorithm for

TSP

Milan Djordjevic, Andrej Brodnik, and Marko Grgurovic

Department of Information Science and Technology
University of Primorska, Koper, Slovenia

milan.djordjevic@student.upr.si, andrej.brodnik@upr.si,
marko.grgurovic@student.upr.si

Abstract. In this paper we study the influence of hybridization of a
genetic algorithm with a local optimizer on instances of a Traveling
Salesman Problem from a TSPLIB. In tests we applied hybridization
at various percentages of genetic algorithm iterations. On one side the
less frequent application of hybridization decreased the average running
time of the algorithm from 14.62 sec to 2.78 sec at 100% and 10% hy-
bridization respectively, while on the other side the quality of solution on
average deteriorated only from 0.21% till 1.40% worse than the optimal
solution. We also studied at which iterations of the genetic algorithm
to apply the hybridization. We applied it at random iterations, at the
initial iterations, and the ending ones where the later proved to be the
best.

1 Introduction

Genetic Algorithms (GA) use some mechanisms inspired by biological
evolution [9]. They are applied on a finite set of individuals called pop-
ulation. Each individual in a population represents one of the feasible
solutions of the search space. Mapping between genetic codes and the
search space is called encoding and can be binary or over some alpha-
bet of higher cardinality. Good choice of encoding is a basic condition
for successful application of a genetic algorithm. Each individual in the
population is assigned a value called fitness. Fitness represents a relative
indicator of quality of an individual compared to other individuals in
the population. Selection operator chooses individuals from the current
population and takes the ones that are transferred to the next genera-
tion. Thereby, individuals with better fitness are more likely to survive
in the population‘s next generation. The recombination operator com-
bines parts of genetic code of the individuals (parents) into codes of new
individuals (offsprings).
The components of the genetic algorithm software system are: Genotype,
Fitness function, Recombinator, Selector, Mater, Replacer, Terminator,
and in our system a Local searcher which is new extended component.
In this paper we study a well defined problem of a Traveling Salesman
Problem (TSP). In the TSP a set {C1, C2, ...CN} of cities is considered

2

and for each pair {Ci, Cj} of distinct cities a distance d(Ci, Cj) is given.
The goal is to find an ordering π of the cities that minimizes the quantity

N−1∑

i=1

d(Cπ(i), Cπ(i+1)) + d(Cπ(N), Cπ(1)). (1)

This quantity is referred to as the tour length since it is the length of the
tour a salesman would make when visiting the cities in the order specified
by the permutation, returning at the end to the initial city. We will
concentrate in this paper on the symmetric TSP in which the distances
satisfy d(Ci, Cj) = d(Cj , Ci) for 1 ≤ i, j ≤ N and more specificaly to
the Euclidean distance. While the TSP is known to be NP-hard [7] even
under substantial restrictions, the case with Euclidean distance is well
researched and there are many excellent algorithms which perform well
even on very large cases [7].
The 2-opt is a simple local search algorithm for the TSP. The main idea
behind it is to take a route that crosses itself and reorder it so that it
does not cross itself any more. The 2-opt local search will be used to
hybridize GA metaheuristic to solve TSP. Although the 2-opt algorithm
[5] performs well and can be applied to Traveling Salesman Problems
with many cities, it finds only a local minimum. The nearest neighbour
algorithm [10] is one of the most intuitive heuristic algorithms for the
TSP. It’s a greedy method for solving the TSP. The genetic algorithm
considered in this paper are hybrid genetic algorithms, incorporating
local search which have been referred to as Memetic Algorithms (MA)
[11]. One example of hybridisation of genetic algorithms is shown in [12]

2 Grafted GA for the TSP

Grafting in botanic is when the tissues of one plant are affixed to the
tissues of another. Grafting can reduce the time to flowering and shorten
the breeding program. Local Searcher is an extension of the conventional
genetic algorithm as it does not need to make use of genetic components.
It facilitates the optimization of individual genomes outside the evolution
process. There are many implementations of local searchers [6], some even
in hardware [10].
In our algorithm, the pseudocode can be seen in Algorithm 1, after
the recombination has been applied (line 7 in the pseudocode), a Lo-
cal Searcher is used to optimize every single offspring genome (line 8 in
the pseudocode). Because of the usage of such external optimizer the
genetic algorithm is no longer pure and therefore we speak of a grafted
genetic algorithm [2, 3]. This form of optimization is of a local kind.
It alters the genome by heuristically changing the solution. Edge map
crossover [6] is an implementation of the recombination operator (line
7 in the Algorithm 1). It makes use of a so called edge map. Distance
preserving crossover [8] is another implementation of the recombination
operator (line 7 in the Algorithm 1). It attempts to create a new tour
with the same distance to both parents.
The local learcher is an extension to the conventional genetic algorithm as
it needs not make use of genetic operators. It facilitates the optimization

3

of individual genomes outside the evolution process. The Local Searcher
has no further knowledge on the execution of the genetic algorithm in
the larger setting. The system will provide it with the genome it needs
to locally optimize when needed.

Algorithm 1 Pseudocode

1: t = 0
2: initialize (P (t))
3: evaluate (P (t))
4: while not terminate (P (t)) do
5: sel = select (P (t))
6: mat = mate (sel)
7: rec = for each mated collection m ∈ mat do recombination(r)
8: loc = for each genome g in each recombined collection r ∈ rec do local search
9: rep = replace(loc, P (t))
10: P (t+ 1) = select(rep)
11: evaluate (P (t+ 1))
12: t = t+ 1
13: end while

The 2-opt local searcher is a local optimizer for the TSP that has been
grafted into the standard genetic algorithm (line 8 in the Algorithm 1).
This local optimizer performs the 2-opt heuristic that exchanges edges to
reduce the length of a tour. An exchange step consists of removing two
edges from the current tour and reconnecting the resulting two paths in
the best possible way Fig. 1.

3 Experiment

For testing our strategy and comparing it to other solutions we used the
instances of symmetric traveling salesman problem found on TSPLIB.
We used relatively small instances, for which best solutions are known.

Fig. 1. Exchange step of 2-opt algorithm

4

The goal of this research was not to find a better algorithm, but rather
to study on a controlled environment the impact of grafting a genetic
algorithm.
In the first experiment we used 20 instances, with different sizes in a
range from 14 to 150 cities per instance (look in Table 1). We stud-
ied our method (grafted genetic algorithm (GGA)) using two different
recombination operators: an edge map crossover (GGAemc) and a dis-
tance preserving crossover (GGAdpc). As the upper and lower limits on
the quality of solution we used greedy heuristic and Concorde [1] respec-
tively. For the sake of completeness we compared our method also with
2-opt heuristic itself and with a canonical genetic algorithm.
The main difference between our method and canonical genetic algorithm
is that we use local optimizer in every generation of the algorithm.
In the second experiment we studied what happens if we do not use
local optimization in all generations – in test we used it in 10, 20, 30,
40, 50, 60, 70, 80 and 90 percents of the generations. Furthermore, for
each percentage we applied local optimization in three different ways: at
random generations, at the initial generations and at the ending ones.
All experiments were conducted on a computer with Pentium(R) 2.8
GHz CPU and Windows 7 operating system. In our results we can not
cross compare the running times of different solutions as they were im-
plemented in different programming languages. On one hand we used
as a development environment for GGA the Java written EA Visualizer

([4]), while Concorde is an AnsiC application. However, we can compare
running times of GGA for different instances and cases explained before.

4 Results

The results of an experiment are summarized in Table 1. Twenty cases
from the well known TSPLIB were used for testing. The names of these
cases are in the first column and the name always contains the size of
the problem, i.e. the number of cities (which are between 14 and 150).
The last two columns are exact solutions (global minima) obtained by
Concorde [1], together with execution times. A well known problem with
moderate sized examples and tools to get optimal solutions were se-
lected, recall that a goal of this research is not to improve solutions for
difficult problems but to compare and quantitatively examine the effects
of grafting local searches (in this case 2-opt based) to standard genetic al-
gorithm. Such knowledge can be used to fine tune and calibrate a hybrid
system which can then be used on large cases. These last two columns
are used as a reference for all other tests. The second column in Table 1
represents lower bound for the quality of solution. It is a simple nearest
neighbour heuristic. It is fast, but very unsophisticated and any reason-
able algorithm should do better than that. This greedy heuristic gives
results that are about 15 % (except for some very small cases) worse than
the optimal solution. The column titled quality shows by how many per-
cent is the solution produced by this algorithm worse than the optimal
solution. 0 % in this column means algorithm found the best solution.
The running times of the algorithm are from 0.2 to 2.3 in seconds.

5

Table 1. Five techniques for solving Euclidean TSP

Name Greedy 2-opt

quality quality quality gen. time quality gen. time qual. gen. time qual. gen. time opt time

burma14 8.32% 5.71% 0% 74 3.4 0% 81 3.5 0% 7 0.6 0% 6 0.5 3323 0.1

ulysses16 10.42% 7.15% 0% 136 4.1 0% 125 4.4 0% 9 0.7 0% 9 0.7 6859 0.2

ulysses22 12.54% 7.87% 0% 1267 14.7 0% 1328 16.4 0% 8 0.6 0% 8 0.7 7013 0.2

bayg29 13.37% 6.38% 0% 1345 19.4 0% 1137 17.6 0% 13 1.3 0% 14 1.4 1610 0.3

bays29 12.87% 5.37% 0% 2185 29.2 0% 2643 34.1 0% 12 1.2 0% 12 1.2 2020 0.3

dantzig42 14.06% 7.11% 0% 4704 79.8 0% 4232 74.6 0% 10 1.3 0% 9 1.3 699 0.5

att48 13.98% 8.47% 0% 4807 85.2 0% 5213 91.3 0% 22 2.2 0% 23 2.3 33522 0.6

eil51 15.24% 7.67% 4.21% 5482 100.0+ 5.23% 5489 100.0+ 0% 33 3.9 0% 30 3.8 426 0.3

berlin52 14.82% 7.45% 0% 2037 33.7 4.92% 5021 100.0+ 0% 15 1.7 0% 15 1.7 7542 0.4

st70 13.17% 7.84% 5.12% 5259 100.0+ 5.72% 5198 100.0+ 0% 20 4.1 0% 19 4.1 675 0.5

eil76 14.47% 8.15% 6.56% 5347 100.0+ 7.24% 5298 100.0+ 0% 53 4.5 0.19% 49 4.4 538 1.3

pr76 13.96% 9.95% 4.18% 5218 100.0+ 5.36% 5191 100.0+ 0% 42 4.1 0% 43 4.2 108159 1.2

gr96 16.32% 7.14% 4.98% 5191 100.0+ 5.71% 5090 100.0+ 0% 73 8.4 0.13% 73 8.4 55209 1.6

rat99 14.79% 7.41% 5.31% 5114 100.0+ 7.12% 5011 100.0+ 0% 74 11.9 0.17% 70 11.7 1211 1.7

kroA100 12.37% 8.07% 5.12% 5072 100.0+ 6.58% 4971 100.0+ 0% 24 3.6 0.18% 22 3.5 21282 1.7

kroB100 16.58% 7.19% 6.14% 5041 100.0+ 5.92% 4816 100.0+ 0% 39 5.8 0.21% 36 5.7 22141 1.7

kroC100 10.47% 11.19% 4.87% 5121 100.0+ 6.78% 4923 100.0+ 0.10% 34 5.3 0.19% 28 5.1 20749 1.8

kroD100 14.81% 7.74% 5.07% 4976 100.0+ 8.12% 4951 100.0+ 0% 31 5.6 0.29% 25 5.3 21294 1.5

lin105 16.60% 9.85% 6.72% 4756 100.0+ 6.51% 4803 100.0+ 0.01% 26 4.6 0.17% 25 4.6 14379 1.3

ch150 19.62% 11.72% 7.22% 4512 100.0+ 8.77% 4460 100.0+ 0.22% 88 15.2 0.32% 86 15.1 6528 7

GAemc GAdpc GGAemc GGAdpc Concorde

The third column in the Table 1 corresponds to the pure 2-opt algorithm.
As expected, it also gives quick but far from optimal solutions. It quickly
finds a local minimum, but it is unable to broaden the search to find
another local minimum. However, 2-opt algorithm is superior to greedy
algorithm, the quality of the solution, with the similar running times
from 0.2 to 2.5 seconds, is on average about 8 % worse than optimal.

The fourth column in the Table 1 corresponds to the pure Genetic Algo-
rithm. The running time, as expected, is significantly increased. While
our GGA algorithm reached optimal solution below one second or few
seconds (0.6 to 15.3 seconds), the running time for pure genetic algo-
rithm was from 3.4 seconds to 100 seconds which was time-limit. In 12
out of 20 cases no optimal solution was found within that time limit,
but in 8 cases an optimal solution was found and the middle column
indicates in which generation that happened. For 12 cases where opti-
mal solution was not found, the quality of found solution is expressed
as for previous cases in percents above the optimal solution. The sixth
column in Table 1 describes results obtained by our grafted algorithm,
which is programmed with edge map crossover as recombination oper-
ator (GGAemc). In 17 out of 20 considered cases an optimal solution
was found. Remaining three instances differ from optimal solution in
0.01, 0.10 and 0.22 percent. The solutions were found in relatively few
generations and very fast. Execution times were 0.6 to 15.2 seconds.

The seventh column in Table 1 corresponds to our grafted genetic algo-
rithm which contains a distance preserving crossover as recombination
operator (GGAdpc). In 11 out of 20 considered cases an optimal solution
was found. In remained 9 cases, delivered solutions differ from optimal in
range from 0.13 to 0.32 percent. The running time and number of gen-
erations of GGAdpc, in comparison with GGAemc, are slightly lesser,

6

particularly in the lowermost part of the table which represents more
complex instances. Quantitative results on test cases from TSPLIB show
that grafted algorithms, GGAemc and GGAdpc, have advantages. Even
when their’s components have serious drawbacks, their grafted combina-
tions exhibits a very good behaviour. Results on examples from TSPLIB

show that this grafted method combines good qualities from both meth-
ods applied and significantly outperforms each individual method.
The results of experiment extension are summarized in Table 2 and in
Figures 2, 3 and 4.
The first column in Table 2 corresponds to the names of instances and
the size of the problem (which are between 76 and 439) which are du-
plicated for better visualization of the table. The second column in the
Table 2 presents the result of the pure Genetic Algorithm and grafted
Genetic Algorithm, both with edge map crossover as recombination op-
erator (GAemc and GGAemc). This algorithms contain 0% and 100%
frequency of local search, respectively. The q in Table 2 stands for quality
differ from optimal solution. The t stands for running time.
The third column in Table 2 represents results for 10% and 90% fre-
quency. The subcolumn titles rnd, begin, end stands for three variations
of partial hybridization, random, begin sequence and end sequence, re-
spectively. The result for 10% frequency shows that this kind of algorithm
settings is fast (the time vary from 0.9 seconds to 11.0 seconds), but the
quality of solution (which vary from 0.34% to 4.92%), are weak.
The best performance of all tested cases was achieved in the configura-
tion with 90% frequency, especially in variation with end sequence, with
results coloured in red. In 9 out of 11 tested instances the results was the
same as for GGAemc. For instance (kroB100) result was better in 0.01%,
and for instance pr439 a result is worse in 0.04%. Furthermore, the so-
lutions provided by, 90% end sequnce variations, were found faster then
by GGAemc. The running time vary from 3.3 to 78.9 seconds, compared
to the time achieved by GGAemc, which vary from 3.6 to 91.8 seconds.
This mean, that the same quality of result was achieved in shorter time.
The results for instance pr439 can be seen in Figure 2. In 95% of all tested
cases, (look in columns from 3 to 7 in Table 2) the best performance was
achieved in variation with end sequence. Additionally, the results of end
sequence for all instances can be seen in Figure 4. In all three variations
of hybridization (random, begin and end) the running time is the same
for particular frequency. For all tested instances the running time grows
almost linerly with regard to percent of hybridization, see Figure 3.

5 Conclusions

The goal of this paper was to investigate influence of grafting a 2-opt
based local searcher into the standard genetic algorithm, for solving the
Travelling Salesman Problem with Euclidean distance. It is known that
genetic algorithms are very successful when implemented for many NP-
hard problems. However, they are much more effective if some specific
knowledge about particular problem is utilized. In our first experiment
we compared two direct techniques, with our grafted genetic algorithms.

7

Table 2. Partial Grafting of a Genetic Algorithm

N
am

e

rn
d

b
eg

in
en

d
f.

a
rn

d
b

eg
in

en
d

f.
a

rn
d

b
eg

in
en

d
f.

a
rn

d
b

eg
in

en
d

f.
a

rn
d

b
eg

in
en

d
f.

a

q
t

q
q

q
t

q
q

q
t

q
q

q
t

q
q

q
t

q
q

q
t

ei
l7
6

8
.9

3
%

0
.8

2
.4

6
%

2
.1

3
%

1
.2

5
%

1
.2

1
.8

0
%

0
.9

9
%

0
.9

6
%

1
.5

1
.6

2
%

0
.9

2
%

0
.7

7
%

1
.8

1
.5

8
%

0
.4

4
%

0
.2

2
%

2
.2

1
.1

4
%

0
.3

7
%

0
.1

8
%

2
.6

p
r7
6

5
.3

9
%

0
.9

0
.6

0
%

0
.4

1
%

0
.3

4
%

1
.3

0
.3

2
%

0
.2

4
%

0
.1

9
%

1
.7

0
.2

5
%

0
.1

7
%

0
.1

0
%

2
.1

0
.2

0
%

0
.1

6
%

0
.0

9
%

2
.4

0
.1

7
%

0
.1

1
%

0
.0

7
%

2
.7

g
r9
6

6
.4

6
%

1
.7

1
.6

8
%

0
.7

8
%

0
.7

0
%

2
.3

1
.3

7
%

0
.5

9
%

0
.5

5
%

2
.9

0
.9

4
%

0
.5

9
%

0
.5

5
%

3
.6

0
.7

8
%

0
.5

9
%

0
.5

5
%

4
.2

0
.8

2
%

0
.5

5
%

0
.4

7
%

4
.9

ra
t9
9

6
.1

4
%

1
.9

2
.5

3
%

1
.8

2
%

1
.6

2
%

2
.6

2
.6

7
%

0
.9

0
%

0
.7

1
%

3
.3

2
.8

1
%

0
.6

2
%

0
.5

6
%

4
.1

2
.1

3
%

0
.5

3
%

0
.3

9
%

5
.2

1
.2

8
%

0
.4

3
%

0
.3

8
%

6
.3

kr
o
A
1
0
0

6
.6

7
%

0
.6

1
.0

9
%

0
.7

3
%

0
.3

8
%

0
.9

0
.8

4
%

0
.3

8
%

0
.3

3
%

1
.2

0
.1

9
%

0
.2

2
%

0
.1

2
%

1
.5

0
.1

8
%

0
.0

8
%

0
.0

3
%

1
.8

0
.1

6
%

0
.0

3
%

0
.0

2
%

2
.1

kr
o
B
1
0
0

7
.0

2
%

0
.8

1
.6

1
%

1
.1

5
%

1
.0

2
%

1
.3

1
.2

6
%

0
.7

0
%

0
.5

3
%

1
.8

0
.7

2
%

0
.7

0
%

0
.4

2
%

2
.3

0
.7

1
%

0
.4

7
%

0
.3

5
%

2
.8

0
.7

6
%

0
.4

0
%

0
.3

8
%

3
.3

kr
o
C
1
0
0

6
.6

1
%

0
.7

2
.2

0
%

1
.0

5
%

0
.9

9
%

1
.2

1
.1

9
%

0
.9

0
%

0
.7

5
%

1
.6

0
.9

7
%

0
.6

3
%

0
.5

2
%

2
.1

0
.7

9
%

0
.4

4
%

0
.3

7
%

2
.5

0
.7

4
%

0
.3

8
%

0
.3

6
%

2
.9

kr
o
D
1
0
0

7
.6

7
%

0
.8

2
.2

0
%

1
.8

7
%

2
.1

1
%

1
.3

2
.3

9
%

2
.0

2
%

1
.4

7
%

1
.8

1
.4

4
%

1
.1

7
%

0
.9

7
%

2
.3

1
.2

6
%

0
.8

9
%

0
.6

7
%

2
.8

0
.9

7
%

0
.5

4
%

0
.4

6
%

3
.3

li
n
1
0
5

8
.5

4
%

0
.5

1
.5

0
%

1
.1

1
%

1
.1

9
%

0
.9

0
.8

9
%

0
.7

0
%

0
.5

0
%

1
.4

0
.8

3
%

0
.4

0
%

0
.4

1
%

1
.8

0
.7

1
%

0
.3

7
%

0
.2

9
%

2
.2

0
.4

6
%

0
.2

3
%

0
.2

3
%

2
.6

ch
1
5
0

8
.6

9
%

5
.4

2
.9

4
%

2
.5

2
%

2
.3

4
%

6
.2

2
.1

7
%

1
.8

9
%

1
.8

3
%

6
.9

1
.7

7
%

1
.5

8
%

1
.3

7
%

7
.8

1
.6

3
%

1
.4

6
%

1
.3

6
%

8
.7

1
.3

1
%

1
.1

9
%

0
.9

2
%

9
.6

*
p
r4
3
9

1
0

.4
5

%
3

.7
4

.9
2

%
4

.3
5

%
3

.4
8

%
1

1
4

.5
9

%
3

.4
3

%
2

.9
6

%
1

8
4

.0
4

%
3

.1
6

%
2

.8
1

%
2

5
3

.3
4

%
2

.9
2

%
2

.5
6

%
3

6
.8

3
.6

2
%

3
.1

3
%

2
.4

5
%

4
5

rn
d

b
eg

in
en

d
f.

a
rn

d
b

eg
in

en
d

f.
a

rn
d

b
eg

in
en

d
f.

a
rn

d
b

eg
in

en
d

f.
a

q
t

q
q

q
t

q
q

q
t

q
q

q
t

q
q

q
t

ei
l7
6

0
.0

4
%

4
.5

0
.1

5
%

0
.0

4
%

0
.0

4
%

4
.1

0
.1

8
%

0
.0

7
%

0
.0

4
%

3
.7

0
.4

4
%

0
.1

5
%

0
.1

1
%

3
.3

1
.0

7
%

0
.2

2
%

0
.1

1
%

2
.9

p
r7
6

0
.0

4
%

4
.1

0
.0

7
%

0
.0

4
%

0
.0

4
%

3
.8

0
.1

2
%

0
.1

0
%

0
.0

5
%

3
.5

0
.1

1
%

0
.1

0
%

0
.0

6
%

3
.2

0
.1

5
%

0
.1

1
%

0
.0

6
%

2
.9

g
r9
6

0
.1

2
%

8
.4

0
.2

3
%

0
.1

6
%

0
.1

2
%

7
.7

0
.2

7
%

0
.2

3
%

0
.2

0
%

7
0

.3
9

%
0

.3
5

%
0

.2
7

%
6

.3
0

.7
4

%
0

.3
5

%
0

.3
1

%
5

.6

ra
t9
9

0
.0

0
%

1
1

.9
0

.0
7

%
0

.0
0

%
0

.0
0

%
1

0
.8

0
.5

6
%

0
.0

5
%

0
.0

2
%

9
.7

0
.6

1
%

0
.1

6
%

0
.0

5
%

8
.5

1
.1

3
%

0
.3

0
%

0
.2

5
%

7
.4

kr
o
A
1
0
0

0
.0

0
%

3
.6

0
.0

0
%

0
.0

0
%

0
.0

0
%

3
.3

0
.0

0
%

0
.0

0
%

0
.0

0
%

3
0

.0
1

%
0

.0
0

%
0

.0
0

%
2

.7
0

.0
5

%
0

.0
0

%
0

.0
0

%
2

.4

kr
o
B
1
0
0

0
.1

0
%

5
.8

0
.2

2
%

0
.1

2
%

0
.0

9
%

5
.3

0
.3

1
%

0
.3

7
%

0
.2

2
%

4
.9

0
.5

2
%

0
.2

0
%

0
.2

4
%

4
.3

0
.8

1
%

0
.3

0
%

0
.2

9
%

3
.7

kr
o
C
1
0
0

0
.2

3
%

5
.3

0
.3

7
%

0
.3

2
%

0
.2

3
%

4
.8

0
.5

7
%

0
.5

6
%

0
.2

2
%

4
.3

0
.5

2
%

0
.3

4
%

0
.2

9
%

3
.7

0
.5

5
%

0
.3

2
%

0
.3

2
%

3
.3

kr
o
D
1
0
0

0
.0

8
%

5
.6

0
.3

2
%

0
.2

8
%

0
.0

8
%

5
.2

0
.5

8
%

0
.3

1
%

0
.2

6
%

4
.7

0
.6

1
%

0
.4

5
%

0
.4

0
%

4
.3

0
.8

8
%

0
.5

3
%

0
.4

5
%

3
.8

li
n
1
0
5

0
.1

0
%

4
.6

0
.1

2
%

0
.0

9
%

0
.1

0
%

4
.2

0
.1

1
%

0
.1

5
%

0
.1

0
%

3
.8

0
.1

3
%

0
.1

2
%

0
.0

9
%

3
.4

0
.2

1
%

0
.1

7
%

0
.1

2
%

3
.0

ch
1
5
0

0
.3

0
%

1
5

.2
0

.8
1

%
0

.3
5

%
0

.3
0

%
1

4
.1

0
.8

6
%

0
.4

2
%

0
.3

7
%

1
3

0
.9

6
%

0
.6

9
%

0
.5

4
%

1
2

1
.1

6
%

0
.9

7
%

0
.8

4
%

1
0

.7

*
p
r4
3
9

1
.3

0
%

9
1

.8
1

.7
2

%
1

.6
6

%
1

.3
4

%
7

8
.9

2
.2

8
%

2
.1

4
%

1
.9

7
%

7
0

2
.7

8
%

2
.1

8
%

2
.0

3
%

6
2

3
.2

6
%

2
.9

1
%

2
.3

1
%

5
2

.4

G
A
em
c

1
0

2
0

G
G
A
em
c

3
0

4
0

5
0

9
0

8
0

7
0

6
0

8

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

random

begin

end

Fig. 2. Results for pr439

0

10

20

30

40

50

60

70

80

90

100

pr439

ch150

lin105

kroD100

kroC100

kroB100

kroA100

rat99

gr96

pr76

eil76

Fig. 3. Running times

9

pr439

lin105

kroC100

kroA100

gr96

eil76

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

pr439

ch150

lin105

kroD100

kroC100

kroB100

kroA100

rat99

gr96

pr76

eil76

Fig. 4. Results for end sequence

Solutions from Concorde and greedy algorithm were added for better
comparison. Quantitative results on test cases from TSPLIB show that
grafted algorithms have advantages. Even when both components have
serious drawbacks, their grafted combinations exhibits a very good be-
haviour. Results on examples from TSPLIB show that this method com-
bines good qualities from both methods applied and significantly outper-
forms each individual method.

In the second part of an experiment an influence of partial grafting a
2-opt local searcher into genetic algorithm was studied. The best perfor-

mance was achieved in a configuration with 90% frequency with end se-
quence. In a comparison with a performance of GGAemc the same quality

of results was achieved in a shorter time, on average a 7% of running time
was spared. The cases with 10% frequency use of local search provides
fast and far from optimal solutions but still better then the GAemc, with
small increase in time. The configurations with 50% frequency use of lo-
cal searcher present a good examples of trade-off between a running time
and quality, especcialy in setting with ending sequence of local searcher.
From the results obtained in Table 2, we can conclude that the best gain
is attained when a local searcher is used in an ending sequence of the
algorithm and in frequency not less then 50% and not more than 90%.
There are several issues for future research, such as investigating the ef-
fects of a different use of the local optimisation and other metaheuristic
algorithms, analyzing the individual performance gains provided by the
local search, and to look at how to scale up the algorithm for solving
large instances of TSP.

10

References

1. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: TSP cuts which
do not conform to the template paradigm. In: Computational Com-
binatorial Optimization (2001) 261–304

2. Djordjevic, M.: Influence of Grafting a Hybrid Searcher Into the
Evolutionary Algorithm. In: Proceedings of the Seventeenth Inter-
national Electrotechnical and Computer Science Conference. Slove-
nian Section IEEE (2008) 115–118

3. Djordjevic, M., Tuba, M., Djordjevic, B.: Impact of Grafting a 2-
opt Algorithm Based Local Searcher Into the Genetic Algorithm. In:
Proceedings of the 9th WSEAS international conference on Applied
informatics and communications. World Scientific and Engineering
Academy and Society (WSEAS) (2009) 485–490

4. Bosman, P., Thierens, D.: On the modelling of evolutionary algo-
rithms. In: Proceedings of the Eleventh Belgium-Netherlands Con-
ference on Artificial Intelligence BNAIC (1999) 67–74

5. Engels, C., Manthey, B.: Average-case approximation ratio of the
2-opt algorithm for the TSP. Operations Research Letters 37 (2009)
83–84

6. Freisleben, B., Merz, P.: New genetic local search operators for the
traveling salesman problem. In: Proceedings of the 4th International
Conference on Parallel Problem Solving from Nature (1996) 890–899

7. Garey, M., Johnson, D.: Computers and Intractability: A Guide to
the Theory of NP-completeness. WH Freeman & Co, New York
(1979)

8. Helsgaun, K.: An effective implementation of the Lin-Kernighan
traveling salesman heuristic. European Journal of Operational Re-
search 126 (2000) 106–130

9. Holland, J.: Adaptation in natural and artificial systems. The Uni-
versity of Michigan Press, Ann Arbor (1975)

10. Hoos, H., Stutzle, T.: Stochastic local search: Foundations and ap-
plications. Morgan Kaufmann (2005)

11. Merz, P., Freisleben, B.: Memetic algorithms for the traveling sales-
man problem. Complex Systems 13 (2001) 297–346

12. Sels, V., Vanhoucke, M.: A hybrid dual-population genetic algorithm
for the single machine maximum lateness problem. In: Proceedings
of the 11th European conference on Evolutionary computation in
combinatorial optimization (2011) 14–25

